Step | Hyp | Ref
| Expression |
1 | | df-cok 4191 |
. . . . 5
⊢ (A ∘k B) = (( Ins2k A ∩ Ins3k ◡kB) “k V) |
2 | 1 | eleq2i 2417 |
. . . 4
⊢ (x ∈ (A ∘k B) ↔ x
∈ (( Ins2k A ∩ Ins3k ◡kB) “k V)) |
3 | | vex 2863 |
. . . . 5
⊢ x ∈
V |
4 | 3 | elimakv 4261 |
. . . 4
⊢ (x ∈ (( Ins2k A ∩ Ins3k ◡kB) “k V) ↔ ∃y⟪y,
x⟫ ∈ ( Ins2k A ∩ Ins3k ◡kB)) |
5 | 2, 4 | bitri 240 |
. . 3
⊢ (x ∈ (A ∘k B) ↔ ∃y⟪y,
x⟫ ∈ ( Ins2k A ∩ Ins3k ◡kB)) |
6 | | inss1 3476 |
. . . . . 6
⊢ ( Ins2k A ∩ Ins3k ◡kB) ⊆ Ins2k A |
7 | 6 | sseli 3270 |
. . . . 5
⊢ (⟪y, x⟫
∈ ( Ins2k A ∩ Ins3k ◡kB) → ⟪y, x⟫
∈ Ins2k A) |
8 | | vex 2863 |
. . . . . . 7
⊢ y ∈
V |
9 | | opkelins2kg 4252 |
. . . . . . 7
⊢ ((y ∈ V ∧ x ∈ V) → (⟪y, x⟫
∈ Ins2k A ↔ ∃a∃b∃c(y = {{a}} ∧ x =
⟪b, c⟫ ∧
⟪a, c⟫ ∈
A))) |
10 | 8, 3, 9 | mp2an 653 |
. . . . . 6
⊢ (⟪y, x⟫
∈ Ins2k A ↔ ∃a∃b∃c(y = {{a}} ∧ x =
⟪b, c⟫ ∧
⟪a, c⟫ ∈
A)) |
11 | | vex 2863 |
. . . . . . . . . . 11
⊢ b ∈
V |
12 | | vex 2863 |
. . . . . . . . . . 11
⊢ c ∈
V |
13 | 11, 12 | opkelxpk 4249 |
. . . . . . . . . . 11
⊢ (⟪b, c⟫
∈ (V ×k V) ↔
(b ∈ V
∧ c ∈ V)) |
14 | 11, 12, 13 | mpbir2an 886 |
. . . . . . . . . 10
⊢ ⟪b, c⟫
∈ (V ×k
V) |
15 | | eleq1 2413 |
. . . . . . . . . 10
⊢ (x = ⟪b,
c⟫ → (x ∈ (V
×k V) ↔ ⟪b, c⟫
∈ (V ×k
V))) |
16 | 14, 15 | mpbiri 224 |
. . . . . . . . 9
⊢ (x = ⟪b,
c⟫ → x ∈ (V
×k V)) |
17 | 16 | 3ad2ant2 977 |
. . . . . . . 8
⊢ ((y = {{a}} ∧ x =
⟪b, c⟫ ∧
⟪a, c⟫ ∈
A) → x ∈ (V
×k V)) |
18 | 17 | exlimiv 1634 |
. . . . . . 7
⊢ (∃c(y = {{a}} ∧ x =
⟪b, c⟫ ∧
⟪a, c⟫ ∈
A) → x ∈ (V
×k V)) |
19 | 18 | exlimivv 1635 |
. . . . . 6
⊢ (∃a∃b∃c(y = {{a}} ∧ x =
⟪b, c⟫ ∧
⟪a, c⟫ ∈
A) → x ∈ (V
×k V)) |
20 | 10, 19 | sylbi 187 |
. . . . 5
⊢ (⟪y, x⟫
∈ Ins2k A → x ∈ (V ×k
V)) |
21 | 7, 20 | syl 15 |
. . . 4
⊢ (⟪y, x⟫
∈ ( Ins2k A ∩ Ins3k ◡kB) → x
∈ (V ×k
V)) |
22 | 21 | exlimiv 1634 |
. . 3
⊢ (∃y⟪y,
x⟫ ∈ ( Ins2k A ∩ Ins3k ◡kB) → x
∈ (V ×k
V)) |
23 | 5, 22 | sylbi 187 |
. 2
⊢ (x ∈ (A ∘k B) → x
∈ (V ×k
V)) |
24 | 23 | ssriv 3278 |
1
⊢ (A ∘k B) ⊆ (V
×k V) |