NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  cokrelk GIF version

Theorem cokrelk 4285
Description: A Kuratowski composition is a Kuratowski relationship. (Contributed by SF, 4-Feb-2015.)
Assertion
Ref Expression
cokrelk (A k B) (V ×k V)

Proof of Theorem cokrelk
Dummy variables x y a b c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cok 4191 . . . . 5 (A k B) = (( Ins2k AIns3k kB) “k V)
21eleq2i 2417 . . . 4 (x (A k B) ↔ x (( Ins2k AIns3k kB) “k V))
3 vex 2863 . . . . 5 x V
43elimakv 4261 . . . 4 (x (( Ins2k AIns3k kB) “k V) ↔ yy, x ( Ins2k AIns3k kB))
52, 4bitri 240 . . 3 (x (A k B) ↔ yy, x ( Ins2k AIns3k kB))
6 inss1 3476 . . . . . 6 ( Ins2k AIns3k kB) Ins2k A
76sseli 3270 . . . . 5 (⟪y, x ( Ins2k AIns3k kB) → ⟪y, x Ins2k A)
8 vex 2863 . . . . . . 7 y V
9 opkelins2kg 4252 . . . . . . 7 ((y V x V) → (⟪y, x Ins2k Aabc(y = {{a}} x = ⟪b, ca, c A)))
108, 3, 9mp2an 653 . . . . . 6 (⟪y, x Ins2k Aabc(y = {{a}} x = ⟪b, ca, c A))
11 vex 2863 . . . . . . . . . . 11 b V
12 vex 2863 . . . . . . . . . . 11 c V
1311, 12opkelxpk 4249 . . . . . . . . . . 11 (⟪b, c (V ×k V) ↔ (b V c V))
1411, 12, 13mpbir2an 886 . . . . . . . . . 10 b, c (V ×k V)
15 eleq1 2413 . . . . . . . . . 10 (x = ⟪b, c⟫ → (x (V ×k V) ↔ ⟪b, c (V ×k V)))
1614, 15mpbiri 224 . . . . . . . . 9 (x = ⟪b, c⟫ → x (V ×k V))
17163ad2ant2 977 . . . . . . . 8 ((y = {{a}} x = ⟪b, ca, c A) → x (V ×k V))
1817exlimiv 1634 . . . . . . 7 (c(y = {{a}} x = ⟪b, ca, c A) → x (V ×k V))
1918exlimivv 1635 . . . . . 6 (abc(y = {{a}} x = ⟪b, ca, c A) → x (V ×k V))
2010, 19sylbi 187 . . . . 5 (⟪y, x Ins2k Ax (V ×k V))
217, 20syl 15 . . . 4 (⟪y, x ( Ins2k AIns3k kB) → x (V ×k V))
2221exlimiv 1634 . . 3 (yy, x ( Ins2k AIns3k kB) → x (V ×k V))
235, 22sylbi 187 . 2 (x (A k B) → x (V ×k V))
2423ssriv 3278 1 (A k B) (V ×k V)
Colors of variables: wff setvar class
Syntax hints:  wb 176   w3a 934  wex 1541   = wceq 1642   wcel 1710  Vcvv 2860  cin 3209   wss 3258  {csn 3738  copk 4058   ×k cxpk 4175  kccnvk 4176   Ins2k cins2k 4177   Ins3k cins3k 4178  k cimak 4180   k ccomk 4181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-pr 3743  df-opk 4059  df-xpk 4186  df-ins2k 4188  df-imak 4190  df-cok 4191
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator