New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cokeq2 | GIF version |
Description: Equality theorem for Kuratowski composition of two classes. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
cokeq2 | ⊢ (A = B → (C ∘k A) = (C ∘k B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvkeq 4216 | . . . . 5 ⊢ (A = B → ◡kA = ◡kB) | |
2 | 1 | ins3keqd 4224 | . . . 4 ⊢ (A = B → Ins3k ◡kA = Ins3k ◡kB) |
3 | 2 | ineq2d 3458 | . . 3 ⊢ (A = B → ( Ins2k C ∩ Ins3k ◡kA) = ( Ins2k C ∩ Ins3k ◡kB)) |
4 | 3 | imakeq1d 4229 | . 2 ⊢ (A = B → (( Ins2k C ∩ Ins3k ◡kA) “k V) = (( Ins2k C ∩ Ins3k ◡kB) “k V)) |
5 | df-cok 4191 | . 2 ⊢ (C ∘k A) = (( Ins2k C ∩ Ins3k ◡kA) “k V) | |
6 | df-cok 4191 | . 2 ⊢ (C ∘k B) = (( Ins2k C ∩ Ins3k ◡kB) “k V) | |
7 | 4, 5, 6 | 3eqtr4g 2410 | 1 ⊢ (A = B → (C ∘k A) = (C ∘k B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 Vcvv 2860 ∩ cin 3209 ◡kccnvk 4176 Ins2k cins2k 4177 Ins3k cins3k 4178 “k cimak 4180 ∘k ccomk 4181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-cnvk 4187 df-ins3k 4189 df-imak 4190 df-cok 4191 |
This theorem is referenced by: cokeq2i 4234 cokeq2d 4236 |
Copyright terms: Public domain | W3C validator |