NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  hadbi GIF version

Theorem hadbi 1387
Description: The half adder is the same as the triple biconditional. (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
hadbi (hadd(φ, ψ, χ) ↔ ((φψ) ↔ χ))

Proof of Theorem hadbi
StepHypRef Expression
1 df-xor 1305 . 2 (((φψ) ⊻ χ) ↔ ¬ ((φψ) ↔ χ))
2 df-had 1380 . 2 (hadd(φ, ψ, χ) ↔ ((φψ) ⊻ χ))
3 xnor 1306 . . . 4 ((φψ) ↔ ¬ (φψ))
43bibi1i 305 . . 3 (((φψ) ↔ χ) ↔ (¬ (φψ) ↔ χ))
5 nbbn 347 . . 3 ((¬ (φψ) ↔ χ) ↔ ¬ ((φψ) ↔ χ))
64, 5bitri 240 . 2 (((φψ) ↔ χ) ↔ ¬ ((φψ) ↔ χ))
71, 2, 63bitr4i 268 1 (hadd(φ, ψ, χ) ↔ ((φψ) ↔ χ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176  wxo 1304  haddwhad 1378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-xor 1305  df-had 1380
This theorem is referenced by:  had1  1402
  Copyright terms: Public domain W3C validator