New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > hadbi | GIF version |
Description: The half adder is the same as the triple biconditional. (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
hadbi | ⊢ (hadd(φ, ψ, χ) ↔ ((φ ↔ ψ) ↔ χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xor 1305 | . 2 ⊢ (((φ ⊻ ψ) ⊻ χ) ↔ ¬ ((φ ⊻ ψ) ↔ χ)) | |
2 | df-had 1380 | . 2 ⊢ (hadd(φ, ψ, χ) ↔ ((φ ⊻ ψ) ⊻ χ)) | |
3 | xnor 1306 | . . . 4 ⊢ ((φ ↔ ψ) ↔ ¬ (φ ⊻ ψ)) | |
4 | 3 | bibi1i 305 | . . 3 ⊢ (((φ ↔ ψ) ↔ χ) ↔ (¬ (φ ⊻ ψ) ↔ χ)) |
5 | nbbn 347 | . . 3 ⊢ ((¬ (φ ⊻ ψ) ↔ χ) ↔ ¬ ((φ ⊻ ψ) ↔ χ)) | |
6 | 4, 5 | bitri 240 | . 2 ⊢ (((φ ↔ ψ) ↔ χ) ↔ ¬ ((φ ⊻ ψ) ↔ χ)) |
7 | 1, 2, 6 | 3bitr4i 268 | 1 ⊢ (hadd(φ, ψ, χ) ↔ ((φ ↔ ψ) ↔ χ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ⊻ wxo 1304 haddwhad 1378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-xor 1305 df-had 1380 |
This theorem is referenced by: had1 1402 |
Copyright terms: Public domain | W3C validator |