| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > hadnot | GIF version | ||
| Description: The half adder distributes over negation. (Contributed by Mario Carneiro, 4-Sep-2016.) |
| Ref | Expression |
|---|---|
| hadnot | ⊢ (¬ hadd(φ, ψ, χ) ↔ hadd(¬ φ, ¬ ψ, ¬ χ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xorneg 1313 | . . . 4 ⊢ ((¬ φ ⊻ ¬ ψ) ↔ (φ ⊻ ψ)) | |
| 2 | biid 227 | . . . 4 ⊢ (¬ χ ↔ ¬ χ) | |
| 3 | 1, 2 | xorbi12i 1314 | . . 3 ⊢ (((¬ φ ⊻ ¬ ψ) ⊻ ¬ χ) ↔ ((φ ⊻ ψ) ⊻ ¬ χ)) |
| 4 | xorneg2 1312 | . . 3 ⊢ (((φ ⊻ ψ) ⊻ ¬ χ) ↔ ¬ ((φ ⊻ ψ) ⊻ χ)) | |
| 5 | 3, 4 | bitr2i 241 | . 2 ⊢ (¬ ((φ ⊻ ψ) ⊻ χ) ↔ ((¬ φ ⊻ ¬ ψ) ⊻ ¬ χ)) |
| 6 | df-had 1380 | . . 3 ⊢ (hadd(φ, ψ, χ) ↔ ((φ ⊻ ψ) ⊻ χ)) | |
| 7 | 6 | notbii 287 | . 2 ⊢ (¬ hadd(φ, ψ, χ) ↔ ¬ ((φ ⊻ ψ) ⊻ χ)) |
| 8 | df-had 1380 | . 2 ⊢ (hadd(¬ φ, ¬ ψ, ¬ χ) ↔ ((¬ φ ⊻ ¬ ψ) ⊻ ¬ χ)) | |
| 9 | 5, 7, 8 | 3bitr4i 268 | 1 ⊢ (¬ hadd(φ, ψ, χ) ↔ hadd(¬ φ, ¬ ψ, ¬ χ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 176 ⊻ wxo 1304 haddwhad 1378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-xor 1305 df-had 1380 |
| This theorem is referenced by: had0 1403 |
| Copyright terms: Public domain | W3C validator |