NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  hadnot GIF version

Theorem hadnot 1393
Description: The half adder distributes over negation. (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
hadnot (¬ hadd(φ, ψ, χ) ↔ hadd(¬ φ, ¬ ψ, ¬ χ))

Proof of Theorem hadnot
StepHypRef Expression
1 xorneg 1313 . . . 4 ((¬ φ ⊻ ¬ ψ) ↔ (φψ))
2 biid 227 . . . 4 χ ↔ ¬ χ)
31, 2xorbi12i 1314 . . 3 (((¬ φ ⊻ ¬ ψ) ⊻ ¬ χ) ↔ ((φψ) ⊻ ¬ χ))
4 xorneg2 1312 . . 3 (((φψ) ⊻ ¬ χ) ↔ ¬ ((φψ) ⊻ χ))
53, 4bitr2i 241 . 2 (¬ ((φψ) ⊻ χ) ↔ ((¬ φ ⊻ ¬ ψ) ⊻ ¬ χ))
6 df-had 1380 . . 3 (hadd(φ, ψ, χ) ↔ ((φψ) ⊻ χ))
76notbii 287 . 2 (¬ hadd(φ, ψ, χ) ↔ ¬ ((φψ) ⊻ χ))
8 df-had 1380 . 2 (hadd(¬ φ, ¬ ψ, ¬ χ) ↔ ((¬ φ ⊻ ¬ ψ) ⊻ ¬ χ))
95, 7, 83bitr4i 268 1 (¬ hadd(φ, ψ, χ) ↔ hadd(¬ φ, ¬ ψ, ¬ χ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176  wxo 1304  haddwhad 1378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-xor 1305  df-had 1380
This theorem is referenced by:  had0  1403
  Copyright terms: Public domain W3C validator