New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > hadcoma | GIF version |
Description: Commutative law for triple XOR. (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
hadcoma | ⊢ (hadd(φ, ψ, χ) ↔ hadd(ψ, φ, χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xorcom 1307 | . . 3 ⊢ ((φ ⊻ ψ) ↔ (ψ ⊻ φ)) | |
2 | biid 227 | . . 3 ⊢ (χ ↔ χ) | |
3 | 1, 2 | xorbi12i 1314 | . 2 ⊢ (((φ ⊻ ψ) ⊻ χ) ↔ ((ψ ⊻ φ) ⊻ χ)) |
4 | df-had 1380 | . 2 ⊢ (hadd(φ, ψ, χ) ↔ ((φ ⊻ ψ) ⊻ χ)) | |
5 | df-had 1380 | . 2 ⊢ (hadd(ψ, φ, χ) ↔ ((ψ ⊻ φ) ⊻ χ)) | |
6 | 3, 4, 5 | 3bitr4i 268 | 1 ⊢ (hadd(φ, ψ, χ) ↔ hadd(ψ, φ, χ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ⊻ wxo 1304 haddwhad 1378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-xor 1305 df-had 1380 |
This theorem is referenced by: hadrot 1390 |
Copyright terms: Public domain | W3C validator |