NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  hadass GIF version

Theorem hadass 1386
Description: Associative law for triple XOR. (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
hadass (hadd(φ, ψ, χ) ↔ (φ ⊻ (ψχ)))

Proof of Theorem hadass
StepHypRef Expression
1 df-had 1380 . 2 (hadd(φ, ψ, χ) ↔ ((φψ) ⊻ χ))
2 xorass 1308 . 2 (((φψ) ⊻ χ) ↔ (φ ⊻ (ψχ)))
31, 2bitri 240 1 (hadd(φ, ψ, χ) ↔ (φ ⊻ (ψχ)))
Colors of variables: wff setvar class
Syntax hints:  wb 176  wxo 1304  haddwhad 1378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-xor 1305  df-had 1380
This theorem is referenced by:  hadcomb  1389
  Copyright terms: Public domain W3C validator