New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > hadass | GIF version |
Description: Associative law for triple XOR. (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
hadass | ⊢ (hadd(φ, ψ, χ) ↔ (φ ⊻ (ψ ⊻ χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-had 1380 | . 2 ⊢ (hadd(φ, ψ, χ) ↔ ((φ ⊻ ψ) ⊻ χ)) | |
2 | xorass 1308 | . 2 ⊢ (((φ ⊻ ψ) ⊻ χ) ↔ (φ ⊻ (ψ ⊻ χ))) | |
3 | 1, 2 | bitri 240 | 1 ⊢ (hadd(φ, ψ, χ) ↔ (φ ⊻ (ψ ⊻ χ))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ⊻ wxo 1304 haddwhad 1378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-xor 1305 df-had 1380 |
This theorem is referenced by: hadcomb 1389 |
Copyright terms: Public domain | W3C validator |