| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > df-qs | GIF version | ||
| Description: Define quotient set. R is usually an equivalence relation. Definition of [Enderton] p. 58. (Contributed by set.mm contributors, 22-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| df-qs | ⊢ (A / R) = {y ∣ ∃x ∈ A y = [x]R} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . 3 class A | |
| 2 | cR | . . 3 class R | |
| 3 | 1, 2 | cqs 5947 | . 2 class (A / R) | 
| 4 | vy | . . . . . 6 setvar y | |
| 5 | 4 | cv 1641 | . . . . 5 class y | 
| 6 | vx | . . . . . . 7 setvar x | |
| 7 | 6 | cv 1641 | . . . . . 6 class x | 
| 8 | 7, 2 | cec 5946 | . . . . 5 class [x]R | 
| 9 | 5, 8 | wceq 1642 | . . . 4 wff y = [x]R | 
| 10 | 9, 6, 1 | wrex 2616 | . . 3 wff ∃x ∈ A y = [x]R | 
| 11 | 10, 4 | cab 2339 | . 2 class {y ∣ ∃x ∈ A y = [x]R} | 
| 12 | 3, 11 | wceq 1642 | 1 wff (A / R) = {y ∣ ∃x ∈ A y = [x]R} | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: qseq1 5975 qseq2 5976 elqsg 5977 qsexg 5983 uniqs 5985 snec 5988 | 
| Copyright terms: Public domain | W3C validator |