New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ecexr | GIF version |
Description: A nonempty equivalence class implies the representative is a set. (Contributed by set.mm contributors, 9-Jul-2014.) |
Ref | Expression |
---|---|
ecexr | ⊢ (A ∈ [B]R → B ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 3556 | . . 3 ⊢ (A ∈ (R “ {B}) → ¬ (R “ {B}) = ∅) | |
2 | snprc 3789 | . . . . 5 ⊢ (¬ B ∈ V ↔ {B} = ∅) | |
3 | imaeq2 4939 | . . . . 5 ⊢ ({B} = ∅ → (R “ {B}) = (R “ ∅)) | |
4 | 2, 3 | sylbi 187 | . . . 4 ⊢ (¬ B ∈ V → (R “ {B}) = (R “ ∅)) |
5 | ima0 5014 | . . . 4 ⊢ (R “ ∅) = ∅ | |
6 | 4, 5 | syl6eq 2401 | . . 3 ⊢ (¬ B ∈ V → (R “ {B}) = ∅) |
7 | 1, 6 | nsyl2 119 | . 2 ⊢ (A ∈ (R “ {B}) → B ∈ V) |
8 | df-ec 5948 | . 2 ⊢ [B]R = (R “ {B}) | |
9 | 7, 8 | eleq2s 2445 | 1 ⊢ (A ∈ [B]R → B ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1642 ∈ wcel 1710 Vcvv 2860 ∅c0 3551 {csn 3738 “ cima 4723 [cec 5946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-ima 4728 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-ec 5948 |
This theorem is referenced by: erdisj 5973 ncprc 6125 elnc 6126 eqncg 6127 ncseqnc 6129 |
Copyright terms: Public domain | W3C validator |