New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > qseq1 | GIF version |
Description: Equality theorem for quotient set. (Contributed by set.mm contributors, 23-Jul-1995.) |
Ref | Expression |
---|---|
qseq1 | ⊢ (A = B → (A / C) = (B / C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexeq 2809 | . . 3 ⊢ (A = B → (∃x ∈ A y = [x]C ↔ ∃x ∈ B y = [x]C)) | |
2 | 1 | abbidv 2468 | . 2 ⊢ (A = B → {y ∣ ∃x ∈ A y = [x]C} = {y ∣ ∃x ∈ B y = [x]C}) |
3 | df-qs 5952 | . 2 ⊢ (A / C) = {y ∣ ∃x ∈ A y = [x]C} | |
4 | df-qs 5952 | . 2 ⊢ (B / C) = {y ∣ ∃x ∈ B y = [x]C} | |
5 | 2, 3, 4 | 3eqtr4g 2410 | 1 ⊢ (A = B → (A / C) = (B / C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 {cab 2339 ∃wrex 2616 [cec 5946 / cqs 5947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-qs 5952 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |