New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > uniqs | GIF version |
Description: The union of a quotient set. (Contributed by set.mm contributors, 9-Dec-2008.) |
Ref | Expression |
---|---|
uniqs | ⊢ (R ∈ V → ∪(A / R) = (R “ A)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecexg 5950 | . . . . 5 ⊢ (R ∈ V → [x]R ∈ V) | |
2 | 1 | ralrimivw 2699 | . . . 4 ⊢ (R ∈ V → ∀x ∈ A [x]R ∈ V) |
3 | dfiun2g 4000 | . . . 4 ⊢ (∀x ∈ A [x]R ∈ V → ∪x ∈ A [x]R = ∪{y ∣ ∃x ∈ A y = [x]R}) | |
4 | 2, 3 | syl 15 | . . 3 ⊢ (R ∈ V → ∪x ∈ A [x]R = ∪{y ∣ ∃x ∈ A y = [x]R}) |
5 | 4 | eqcomd 2358 | . 2 ⊢ (R ∈ V → ∪{y ∣ ∃x ∈ A y = [x]R} = ∪x ∈ A [x]R) |
6 | df-qs 5952 | . . 3 ⊢ (A / R) = {y ∣ ∃x ∈ A y = [x]R} | |
7 | 6 | unieqi 3902 | . 2 ⊢ ∪(A / R) = ∪{y ∣ ∃x ∈ A y = [x]R} |
8 | df-ec 5948 | . . . . 5 ⊢ [x]R = (R “ {x}) | |
9 | 8 | a1i 10 | . . . 4 ⊢ (x ∈ A → [x]R = (R “ {x})) |
10 | 9 | iuneq2i 3988 | . . 3 ⊢ ∪x ∈ A [x]R = ∪x ∈ A (R “ {x}) |
11 | imaiun 5465 | . . 3 ⊢ (R “ ∪x ∈ A {x}) = ∪x ∈ A (R “ {x}) | |
12 | iunid 4022 | . . . 4 ⊢ ∪x ∈ A {x} = A | |
13 | 12 | imaeq2i 4941 | . . 3 ⊢ (R “ ∪x ∈ A {x}) = (R “ A) |
14 | 10, 11, 13 | 3eqtr2ri 2380 | . 2 ⊢ (R “ A) = ∪x ∈ A [x]R |
15 | 5, 7, 14 | 3eqtr4g 2410 | 1 ⊢ (R ∈ V → ∪(A / R) = (R “ A)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 {cab 2339 ∀wral 2615 ∃wrex 2616 Vcvv 2860 {csn 3738 ∪cuni 3892 ∪ciun 3970 “ cima 4723 [cec 5946 / cqs 5947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-iun 3972 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-br 4641 df-ima 4728 df-ec 5948 df-qs 5952 |
This theorem is referenced by: uniqs2 5986 ecqs 5989 |
Copyright terms: Public domain | W3C validator |