New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elqsg | GIF version |
Description: Closed form of elqs 5978. (Contributed by Rodolfo Medina, 12-Oct-2010.) |
Ref | Expression |
---|---|
elqsg | ⊢ (B ∈ V → (B ∈ (A / R) ↔ ∃x ∈ A B = [x]R)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2359 | . . 3 ⊢ (y = B → (y = [x]R ↔ B = [x]R)) | |
2 | 1 | rexbidv 2636 | . 2 ⊢ (y = B → (∃x ∈ A y = [x]R ↔ ∃x ∈ A B = [x]R)) |
3 | df-qs 5952 | . 2 ⊢ (A / R) = {y ∣ ∃x ∈ A y = [x]R} | |
4 | 2, 3 | elab2g 2988 | 1 ⊢ (B ∈ V → (B ∈ (A / R) ↔ ∃x ∈ A B = [x]R)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 [cec 5946 / cqs 5947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-v 2862 df-qs 5952 |
This theorem is referenced by: elqs 5978 elqsi 5979 ecelqsg 5980 elncs 6120 |
Copyright terms: Public domain | W3C validator |