NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  df-symdif GIF version

Definition df-symdif 3217
Description: Define the symmetric difference of two classes. Definition IX.9.10, [Rosser] p. 238. (Contributed by SF, 10-Jan-2015.)
Assertion
Ref Expression
df-symdif (AB) = ((A B) ∪ (B A))

Detailed syntax breakdown of Definition df-symdif
StepHypRef Expression
1 cA . . 3 class A
2 cB . . 3 class B
31, 2csymdif 3210 . 2 class (AB)
41, 2cdif 3207 . . 3 class (A B)
52, 1cdif 3207 . . 3 class (B A)
64, 5cun 3208 . 2 class ((A B) ∪ (B A))
73, 6wceq 1642 1 wff (AB) = ((A B) ∪ (B A))
Colors of variables: wff setvar class
This definition is referenced by:  elsymdif  3224  nfsymdif  3234  symdifeq1  3249  symdifeq2  3250  symdifcom  3543  symdifexg  4104
  Copyright terms: Public domain W3C validator