New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-symdif | GIF version |
Description: Define the symmetric difference of two classes. Definition IX.9.10, [Rosser] p. 238. (Contributed by SF, 10-Jan-2015.) |
Ref | Expression |
---|---|
df-symdif | ⊢ (A ⊕ B) = ((A ∖ B) ∪ (B ∖ A)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class A | |
2 | cB | . . 3 class B | |
3 | 1, 2 | csymdif 3210 | . 2 class (A ⊕ B) |
4 | 1, 2 | cdif 3207 | . . 3 class (A ∖ B) |
5 | 2, 1 | cdif 3207 | . . 3 class (B ∖ A) |
6 | 4, 5 | cun 3208 | . 2 class ((A ∖ B) ∪ (B ∖ A)) |
7 | 3, 6 | wceq 1642 | 1 wff (A ⊕ B) = ((A ∖ B) ∪ (B ∖ A)) |
Colors of variables: wff setvar class |
This definition is referenced by: elsymdif 3224 nfsymdif 3234 symdifeq1 3249 symdifeq2 3250 symdifcom 3543 symdifexg 4104 |
Copyright terms: Public domain | W3C validator |