New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elsymdif | GIF version |
Description: Membership in symmetric difference. (Contributed by SF, 10-Jan-2015.) |
Ref | Expression |
---|---|
elsymdif | ⊢ (A ∈ (B ⊕ C) ↔ ¬ (A ∈ B ↔ A ∈ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 3221 | . . 3 ⊢ (A ∈ ((B ∖ C) ∪ (C ∖ B)) ↔ (A ∈ (B ∖ C) ∨ A ∈ (C ∖ B))) | |
2 | eldif 3222 | . . . 4 ⊢ (A ∈ (B ∖ C) ↔ (A ∈ B ∧ ¬ A ∈ C)) | |
3 | eldif 3222 | . . . 4 ⊢ (A ∈ (C ∖ B) ↔ (A ∈ C ∧ ¬ A ∈ B)) | |
4 | 2, 3 | orbi12i 507 | . . 3 ⊢ ((A ∈ (B ∖ C) ∨ A ∈ (C ∖ B)) ↔ ((A ∈ B ∧ ¬ A ∈ C) ∨ (A ∈ C ∧ ¬ A ∈ B))) |
5 | 1, 4 | bitri 240 | . 2 ⊢ (A ∈ ((B ∖ C) ∪ (C ∖ B)) ↔ ((A ∈ B ∧ ¬ A ∈ C) ∨ (A ∈ C ∧ ¬ A ∈ B))) |
6 | df-symdif 3217 | . . 3 ⊢ (B ⊕ C) = ((B ∖ C) ∪ (C ∖ B)) | |
7 | 6 | eleq2i 2417 | . 2 ⊢ (A ∈ (B ⊕ C) ↔ A ∈ ((B ∖ C) ∪ (C ∖ B))) |
8 | xor 861 | . 2 ⊢ (¬ (A ∈ B ↔ A ∈ C) ↔ ((A ∈ B ∧ ¬ A ∈ C) ∨ (A ∈ C ∧ ¬ A ∈ B))) | |
9 | 5, 7, 8 | 3bitr4i 268 | 1 ⊢ (A ∈ (B ⊕ C) ↔ ¬ (A ∈ B ↔ A ∈ C)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∨ wo 357 ∧ wa 358 ∈ wcel 1710 ∖ cdif 3207 ∪ cun 3208 ⊕ csymdif 3210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 |
This theorem is referenced by: opkelimagekg 4272 dfaddc2 4382 nnsucelrlem1 4425 ltfinex 4465 eqpwrelk 4479 eqpw1relk 4480 eqtfinrelk 4487 evenfinex 4504 oddfinex 4505 evenodddisjlem1 4516 nnadjoinlem1 4520 srelk 4525 tfinnnlem1 4534 dfop2lem1 4574 setconslem2 4733 setconslem3 4734 setconslem7 4738 dfswap2 4742 brimage 5794 releqel 5808 releqmpt2 5810 extex 5916 qsexg 5983 ovcelem1 6172 tcfnex 6245 |
Copyright terms: Public domain | W3C validator |