New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > symdifcom | GIF version |
Description: Symmetric difference commutes. (Contributed by SF, 11-Jan-2015.) |
Ref | Expression |
---|---|
symdifcom | ⊢ (A ⊕ B) = (B ⊕ A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 3409 | . 2 ⊢ ((A ∖ B) ∪ (B ∖ A)) = ((B ∖ A) ∪ (A ∖ B)) | |
2 | df-symdif 3217 | . 2 ⊢ (A ⊕ B) = ((A ∖ B) ∪ (B ∖ A)) | |
3 | df-symdif 3217 | . 2 ⊢ (B ⊕ A) = ((B ∖ A) ∪ (A ∖ B)) | |
4 | 1, 2, 3 | 3eqtr4i 2383 | 1 ⊢ (A ⊕ B) = (B ⊕ A) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∖ cdif 3207 ∪ cun 3208 ⊕ csymdif 3210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-symdif 3217 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |