NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  symdifcom GIF version

Theorem symdifcom 3543
Description: Symmetric difference commutes. (Contributed by SF, 11-Jan-2015.)
Assertion
Ref Expression
symdifcom (AB) = (BA)

Proof of Theorem symdifcom
StepHypRef Expression
1 uncom 3409 . 2 ((A B) ∪ (B A)) = ((B A) ∪ (A B))
2 df-symdif 3217 . 2 (AB) = ((A B) ∪ (B A))
3 df-symdif 3217 . 2 (BA) = ((B A) ∪ (A B))
41, 2, 33eqtr4i 2383 1 (AB) = (BA)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642   cdif 3207  cun 3208  csymdif 3210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-un 3215  df-symdif 3217
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator