New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > symdifexg | GIF version |
Description: The symmetric difference of two sets is a set. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
symdifexg | ⊢ ((A ∈ V ∧ B ∈ W) → (A ⊕ B) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-symdif 3217 | . 2 ⊢ (A ⊕ B) = ((A ∖ B) ∪ (B ∖ A)) | |
2 | difexg 4103 | . . 3 ⊢ ((A ∈ V ∧ B ∈ W) → (A ∖ B) ∈ V) | |
3 | difexg 4103 | . . . 4 ⊢ ((B ∈ W ∧ A ∈ V) → (B ∖ A) ∈ V) | |
4 | 3 | ancoms 439 | . . 3 ⊢ ((A ∈ V ∧ B ∈ W) → (B ∖ A) ∈ V) |
5 | unexg 4102 | . . 3 ⊢ (((A ∖ B) ∈ V ∧ (B ∖ A) ∈ V) → ((A ∖ B) ∪ (B ∖ A)) ∈ V) | |
6 | 2, 4, 5 | syl2anc 642 | . 2 ⊢ ((A ∈ V ∧ B ∈ W) → ((A ∖ B) ∪ (B ∖ A)) ∈ V) |
7 | 1, 6 | syl5eqel 2437 | 1 ⊢ ((A ∈ V ∧ B ∈ W) → (A ⊕ B) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∈ wcel 1710 Vcvv 2860 ∖ cdif 3207 ∪ cun 3208 ⊕ csymdif 3210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 |
This theorem is referenced by: symdifex 4109 imagekexg 4312 imageexg 5801 qsexg 5983 |
Copyright terms: Public domain | W3C validator |