New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfsymdif | GIF version |
Description: Hypothesis builder for symmetric difference. (Contributed by SF, 2-Jan-2018.) |
Ref | Expression |
---|---|
nfbool.1 | ⊢ ℲxA |
nfbool.2 | ⊢ ℲxB |
Ref | Expression |
---|---|
nfsymdif | ⊢ Ⅎx(A ⊕ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-symdif 3217 | . 2 ⊢ (A ⊕ B) = ((A ∖ B) ∪ (B ∖ A)) | |
2 | nfbool.1 | . . . 4 ⊢ ℲxA | |
3 | nfbool.2 | . . . 4 ⊢ ℲxB | |
4 | 2, 3 | nfdif 3233 | . . 3 ⊢ Ⅎx(A ∖ B) |
5 | 3, 2 | nfdif 3233 | . . 3 ⊢ Ⅎx(B ∖ A) |
6 | 4, 5 | nfun 3232 | . 2 ⊢ Ⅎx((A ∖ B) ∪ (B ∖ A)) |
7 | 1, 6 | nfcxfr 2487 | 1 ⊢ Ⅎx(A ⊕ B) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2477 ∖ cdif 3207 ∪ cun 3208 ⊕ csymdif 3210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |