New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > tcex | GIF version |
Description: The cardinal T operation always yields a set. (Contributed by SF, 2-Mar-2015.) |
Ref | Expression |
---|---|
tcex | ⊢ Tc A ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tc 6104 | . 2 ⊢ Tc A = (℩x(x ∈ NC ∧ ∃y ∈ A x = Nc ℘1y)) | |
2 | iotaex 4357 | . 2 ⊢ (℩x(x ∈ NC ∧ ∃y ∈ A x = Nc ℘1y)) ∈ V | |
3 | 1, 2 | eqeltri 2423 | 1 ⊢ Tc A ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 Vcvv 2860 ℘1cpw1 4136 ℩cio 4338 NC cncs 6089 Nc cnc 6092 Tc ctc 6094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-uni 3893 df-iota 4340 df-tc 6104 |
This theorem is referenced by: fntcfn 6246 brtcfn 6247 nmembers1lem1 6269 nchoicelem11 6300 nchoicelem16 6305 |
Copyright terms: Public domain | W3C validator |