| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-tcfn 6108 | 
. . 3
⊢ TcFn = (x ∈
1c ↦ Tc ∪x) | 
| 2 |   | oteltxp 5783 | 
. . . . . . 7
⊢ (〈z, 〈{y}, x〉〉 ∈ (◡ S  ⊗
∼ ran ( Ins2 (( NC × V) ∩ ((( S 
∘  SI  Pw1Fn ) ⊗ (( SI
◡ S
 ⊗  S ) “
1c)) “ ℘11c)) ⊕
Ins3 I )) ↔ (〈z, {y}〉 ∈ ◡ S  ∧ 〈z, x〉 ∈ ∼ ran ( Ins2 ((
NC × V) ∩ ((( S
 ∘  SI 
Pw1Fn ) ⊗ (( SI
◡ S
 ⊗  S ) “
1c)) “ ℘11c)) ⊕
Ins3 I ))) | 
| 3 |   | df-br 4641 | 
. . . . . . . . 9
⊢ (z◡ S {y} ↔ 〈z, {y}〉 ∈ ◡ S ) | 
| 4 |   | brcnv 4893 | 
. . . . . . . . . 10
⊢ (z◡ S {y} ↔
{y} S z) | 
| 5 |   | vex 2863 | 
. . . . . . . . . . 11
⊢ y ∈
V | 
| 6 |   | vex 2863 | 
. . . . . . . . . . 11
⊢ z ∈
V | 
| 7 | 5, 6 | brssetsn 4760 | 
. . . . . . . . . 10
⊢ ({y} S z ↔ y ∈ z) | 
| 8 | 4, 7 | bitri 240 | 
. . . . . . . . 9
⊢ (z◡ S {y} ↔
y ∈
z) | 
| 9 | 3, 8 | bitr3i 242 | 
. . . . . . . 8
⊢ (〈z, {y}〉 ∈ ◡ S  ↔ y ∈ z) | 
| 10 |   | vex 2863 | 
. . . . . . . . . . 11
⊢ x ∈
V | 
| 11 | 6, 10 | opex 4589 | 
. . . . . . . . . 10
⊢ 〈z, x〉 ∈ V | 
| 12 | 11 | elcompl 3226 | 
. . . . . . . . 9
⊢ (〈z, x〉 ∈ ∼ ran ( Ins2 ((
NC × V) ∩ ((( S
 ∘  SI 
Pw1Fn ) ⊗ (( SI
◡ S
 ⊗  S ) “
1c)) “ ℘11c)) ⊕
Ins3 I ) ↔ ¬ 〈z, x〉 ∈ ran ( Ins2 (( NC × V) ∩ ((( S 
∘  SI  Pw1Fn ) ⊗ (( SI
◡ S
 ⊗  S ) “
1c)) “ ℘11c)) ⊕
Ins3 I )) | 
| 13 |   | elrn2 4898 | 
. . . . . . . . . . 11
⊢ (〈z, x〉 ∈ ran ( Ins2 (( NC × V) ∩ ((( S 
∘  SI  Pw1Fn ) ⊗ (( SI
◡ S
 ⊗  S ) “
1c)) “ ℘11c)) ⊕
Ins3 I ) ↔ ∃p〈p, 〈z, x〉〉 ∈ ( Ins2 (( NC × V) ∩
((( S  ∘  SI  Pw1Fn ) ⊗
(( SI ◡ S  ⊗
 S ) “ 1c)) “ ℘11c)) ⊕
Ins3 I )) | 
| 14 |   | elsymdif 3224 | 
. . . . . . . . . . . . 13
⊢ (〈p, 〈z, x〉〉 ∈ ( Ins2 (( NC × V) ∩
((( S  ∘  SI  Pw1Fn ) ⊗
(( SI ◡ S  ⊗
 S ) “ 1c)) “ ℘11c)) ⊕
Ins3 I ) ↔ ¬ (〈p, 〈z, x〉〉 ∈ Ins2 (( NC × V) ∩
((( S  ∘  SI  Pw1Fn ) ⊗
(( SI ◡ S  ⊗
 S ) “ 1c)) “ ℘11c)) ↔ 〈p, 〈z, x〉〉 ∈ Ins3 I )) | 
| 15 | 6 | otelins2 5792 | 
. . . . . . . . . . . . . . 15
⊢ (〈p, 〈z, x〉〉 ∈ Ins2 (( NC × V) ∩
((( S  ∘  SI  Pw1Fn ) ⊗
(( SI ◡ S  ⊗
 S ) “ 1c)) “ ℘11c)) ↔ 〈p, x〉 ∈ (( NC × V)
∩ ((( S  ∘
 SI  Pw1Fn ) ⊗
(( SI ◡ S  ⊗
 S ) “ 1c)) “ ℘11c))) | 
| 16 |   | elin 3220 | 
. . . . . . . . . . . . . . 15
⊢ (〈p, x〉 ∈ (( NC × V)
∩ ((( S  ∘
 SI  Pw1Fn ) ⊗
(( SI ◡ S  ⊗
 S ) “ 1c)) “ ℘11c)) ↔ (〈p, x〉 ∈ ( NC × V)
∧ 〈p, x〉 ∈ ((( S  ∘  SI  Pw1Fn ) ⊗
(( SI ◡ S  ⊗
 S ) “ 1c)) “ ℘11c))) | 
| 17 |   | opelxp 4812 | 
. . . . . . . . . . . . . . . . . 18
⊢ (〈p, x〉 ∈ ( NC × V)
↔ (p ∈ NC ∧ x ∈ V)) | 
| 18 | 10, 17 | mpbiran2 885 | 
. . . . . . . . . . . . . . . . 17
⊢ (〈p, x〉 ∈ ( NC × V)
↔ p ∈ NC
) | 
| 19 | 18 | anbi1i 676 | 
. . . . . . . . . . . . . . . 16
⊢ ((〈p, x〉 ∈ ( NC × V)
∧ 〈p, x〉 ∈ ((( S  ∘  SI  Pw1Fn ) ⊗
(( SI ◡ S  ⊗
 S ) “ 1c)) “ ℘11c)) ↔
(p ∈
NC ∧ 〈p, x〉 ∈ ((( S  ∘  SI  Pw1Fn ) ⊗ (( SI
◡ S
 ⊗  S ) “
1c)) “ ℘11c))) | 
| 20 |   | ncseqnc 6129 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (p ∈ NC → (p = Nc ℘1q ↔ ℘1q ∈ p)) | 
| 21 | 20 | rexbidv 2636 | 
. . . . . . . . . . . . . . . . . 18
⊢ (p ∈ NC → (∃q ∈ ∪xp = Nc ℘1q ↔ ∃q ∈ ∪x℘1q ∈ p)) | 
| 22 |   | oteltxp 5783 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (〈{{q}}, 〈p, x〉〉 ∈ (( S  ∘  SI  Pw1Fn ) ⊗
(( SI ◡ S  ⊗
 S ) “ 1c)) ↔ (〈{{q}},
p〉 ∈ ( S  ∘  SI  Pw1Fn ) ∧ 〈{{q}},
x〉 ∈ (( SI ◡ S  ⊗
 S ) “
1c))) | 
| 23 |   | snex 4112 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ {q} ∈
V | 
| 24 | 23 | brsnsi1 5776 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ({{q}} SI  Pw1Fn u ↔ ∃t(u = {t} ∧ {q} Pw1Fn t)) | 
| 25 | 24 | anbi1i 676 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (({{q}} SI  Pw1Fn u ∧ u S p) ↔ (∃t(u = {t} ∧ {q} Pw1Fn t) ∧ u S p)) | 
| 26 |   | 19.41v 1901 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (∃t((u = {t} ∧ {q} Pw1Fn t) ∧ u S p) ↔ (∃t(u = {t} ∧ {q} Pw1Fn t) ∧ u S p)) | 
| 27 | 25, 26 | bitr4i 243 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (({{q}} SI  Pw1Fn u ∧ u S p) ↔ ∃t((u = {t} ∧ {q} Pw1Fn t) ∧ u S p)) | 
| 28 | 27 | exbii 1582 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (∃u({{q}} SI  Pw1Fn u ∧ u S p) ↔ ∃u∃t((u = {t} ∧ {q} Pw1Fn t) ∧ u S p)) | 
| 29 |   | excom 1741 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (∃u∃t((u = {t} ∧ {q} Pw1Fn t) ∧ u S p) ↔ ∃t∃u((u = {t} ∧ {q} Pw1Fn t) ∧ u S p)) | 
| 30 |   | anass 630 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((u = {t} ∧ {q} Pw1Fn t) ∧ u S p) ↔
(u = {t} ∧ ({q} Pw1Fn t ∧ u S p))) | 
| 31 | 30 | exbii 1582 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (∃u((u = {t} ∧ {q} Pw1Fn t) ∧ u S p) ↔ ∃u(u = {t} ∧ ({q} Pw1Fn t ∧ u S p))) | 
| 32 |   | snex 4112 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ {t} ∈
V | 
| 33 |   | breq1 4643 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (u = {t} →
(u S p ↔ {t} S p)) | 
| 34 | 33 | anbi2d 684 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (u = {t} →
(({q} Pw1Fn
t ∧
u S p) ↔ ({q}
Pw1Fn t ∧ {t} S p))) | 
| 35 | 32, 34 | ceqsexv 2895 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (∃u(u = {t} ∧ ({q} Pw1Fn t ∧ u S p)) ↔
({q} Pw1Fn
t ∧
{t} S p)) | 
| 36 |   | vex 2863 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ q ∈
V | 
| 37 | 36 | brpw1fn 5855 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ({q} Pw1Fn t ↔ t =
℘1q) | 
| 38 |   | vex 2863 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ t ∈
V | 
| 39 |   | vex 2863 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ p ∈
V | 
| 40 | 38, 39 | brssetsn 4760 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ({t} S p ↔ t ∈ p) | 
| 41 | 37, 40 | anbi12i 678 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (({q} Pw1Fn t ∧ {t} S p) ↔ (t =
℘1q ∧ t ∈ p)) | 
| 42 | 31, 35, 41 | 3bitri 262 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (∃u((u = {t} ∧ {q} Pw1Fn t) ∧ u S p) ↔
(t = ℘1q ∧ t ∈ p)) | 
| 43 | 42 | exbii 1582 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (∃t∃u((u = {t} ∧ {q} Pw1Fn t) ∧ u S p) ↔ ∃t(t = ℘1q ∧ t ∈ p)) | 
| 44 | 28, 29, 43 | 3bitri 262 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (∃u({{q}} SI  Pw1Fn u ∧ u S p) ↔ ∃t(t = ℘1q ∧ t ∈ p)) | 
| 45 |   | opelco 4885 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (〈{{q}},
p〉 ∈ ( S  ∘  SI  Pw1Fn ) ↔ ∃u({{q}} SI  Pw1Fn u ∧ u S p)) | 
| 46 |   | df-clel 2349 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (℘1q ∈ p ↔ ∃t(t = ℘1q ∧ t ∈ p)) | 
| 47 | 44, 45, 46 | 3bitr4i 268 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (〈{{q}},
p〉 ∈ ( S  ∘  SI  Pw1Fn ) ↔ ℘1q ∈ p) | 
| 48 |   | oteltxp 5783 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (〈{t}, 〈{{q}},
x〉〉 ∈ ( SI ◡ S  ⊗  S ) ↔
(〈{t},
{{q}}〉
∈  SI ◡ S  ∧ 〈{t}, x〉 ∈  S )) | 
| 49 |   | df-br 4641 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ({t} SI ◡ S {{q}} ↔ 〈{t},
{{q}}〉
∈  SI ◡ S
) | 
| 50 | 38, 23 | brsnsi 5774 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ({t} SI ◡ S {{q}} ↔ t◡ S {q}) | 
| 51 |   | brcnv 4893 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (t◡ S {q} ↔
{q} S t) | 
| 52 | 36, 38 | brssetsn 4760 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ({q} S t ↔ q ∈ t) | 
| 53 | 50, 51, 52 | 3bitri 262 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ({t} SI ◡ S {{q}} ↔ q
∈ t) | 
| 54 | 49, 53 | bitr3i 242 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (〈{t},
{{q}}〉
∈  SI ◡ S  ↔
q ∈
t) | 
| 55 | 38, 10 | opelssetsn 4761 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (〈{t}, x〉 ∈  S  ↔ t ∈ x) | 
| 56 | 54, 55 | anbi12i 678 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((〈{t},
{{q}}〉
∈  SI ◡ S  ∧ 〈{t}, x〉 ∈  S ) ↔ (q ∈ t ∧ t ∈ x)) | 
| 57 | 48, 56 | bitri 240 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (〈{t}, 〈{{q}},
x〉〉 ∈ ( SI ◡ S  ⊗  S ) ↔
(q ∈
t ∧
t ∈
x)) | 
| 58 | 57 | exbii 1582 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (∃t〈{t}, 〈{{q}},
x〉〉 ∈ ( SI ◡ S  ⊗  S ) ↔
∃t(q ∈ t ∧ t ∈ x)) | 
| 59 |   | elima1c 4948 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (〈{{q}},
x〉 ∈ (( SI ◡ S  ⊗
 S ) “ 1c) ↔ ∃t〈{t}, 〈{{q}},
x〉〉 ∈ ( SI ◡ S  ⊗  S
)) | 
| 60 |   | eluni 3895 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (q ∈ ∪x ↔ ∃t(q ∈ t ∧ t ∈ x)) | 
| 61 | 58, 59, 60 | 3bitr4i 268 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (〈{{q}},
x〉 ∈ (( SI ◡ S  ⊗
 S ) “ 1c) ↔ q ∈ ∪x) | 
| 62 | 47, 61 | anbi12i 678 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((〈{{q}},
p〉 ∈ ( S  ∘  SI  Pw1Fn ) ∧ 〈{{q}},
x〉 ∈ (( SI ◡ S  ⊗
 S ) “ 1c)) ↔ (℘1q ∈ p ∧ q ∈ ∪x)) | 
| 63 |   | ancom 437 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((℘1q ∈ p ∧ q ∈ ∪x) ↔ (q ∈ ∪x ∧ ℘1q ∈ p)) | 
| 64 | 22, 62, 63 | 3bitri 262 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (〈{{q}}, 〈p, x〉〉 ∈ (( S  ∘  SI  Pw1Fn ) ⊗
(( SI ◡ S  ⊗
 S ) “ 1c)) ↔
(q ∈
∪x ∧ ℘1q ∈ p)) | 
| 65 | 64 | exbii 1582 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (∃q〈{{q}}, 〈p, x〉〉 ∈ (( S  ∘  SI  Pw1Fn ) ⊗
(( SI ◡ S  ⊗
 S ) “ 1c)) ↔ ∃q(q ∈ ∪x ∧ ℘1q ∈ p)) | 
| 66 |   | elimapw11c 4949 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (〈p, x〉 ∈ ((( S  ∘  SI  Pw1Fn ) ⊗ (( SI
◡ S
 ⊗  S ) “
1c)) “ ℘11c) ↔ ∃q〈{{q}}, 〈p, x〉〉 ∈ (( S  ∘  SI  Pw1Fn ) ⊗
(( SI ◡ S  ⊗
 S ) “
1c))) | 
| 67 |   | df-rex 2621 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (∃q ∈ ∪x℘1q ∈ p ↔ ∃q(q ∈ ∪x ∧ ℘1q ∈ p)) | 
| 68 | 65, 66, 67 | 3bitr4i 268 | 
. . . . . . . . . . . . . . . . . 18
⊢ (〈p, x〉 ∈ ((( S  ∘  SI  Pw1Fn ) ⊗ (( SI
◡ S
 ⊗  S ) “
1c)) “ ℘11c) ↔ ∃q ∈ ∪x℘1q ∈ p) | 
| 69 | 21, 68 | syl6rbbr 255 | 
. . . . . . . . . . . . . . . . 17
⊢ (p ∈ NC → (〈p, x〉 ∈ ((( S  ∘  SI  Pw1Fn ) ⊗
(( SI ◡ S  ⊗
 S ) “ 1c)) “ ℘11c) ↔ ∃q ∈ ∪xp = Nc ℘1q)) | 
| 70 | 69 | pm5.32i 618 | 
. . . . . . . . . . . . . . . 16
⊢ ((p ∈ NC ∧ 〈p, x〉 ∈ ((( S  ∘  SI  Pw1Fn ) ⊗ (( SI
◡ S
 ⊗  S ) “
1c)) “ ℘11c)) ↔
(p ∈
NC ∧ ∃q ∈ ∪xp = Nc ℘1q)) | 
| 71 | 19, 70 | bitri 240 | 
. . . . . . . . . . . . . . 15
⊢ ((〈p, x〉 ∈ ( NC × V)
∧ 〈p, x〉 ∈ ((( S  ∘  SI  Pw1Fn ) ⊗
(( SI ◡ S  ⊗
 S ) “ 1c)) “ ℘11c)) ↔
(p ∈
NC ∧ ∃q ∈ ∪xp = Nc ℘1q)) | 
| 72 | 15, 16, 71 | 3bitri 262 | 
. . . . . . . . . . . . . 14
⊢ (〈p, 〈z, x〉〉 ∈ Ins2 (( NC × V) ∩
((( S  ∘  SI  Pw1Fn ) ⊗
(( SI ◡ S  ⊗
 S ) “ 1c)) “ ℘11c)) ↔
(p ∈
NC ∧ ∃q ∈ ∪xp = Nc ℘1q)) | 
| 73 | 10 | otelins3 5793 | 
. . . . . . . . . . . . . . 15
⊢ (〈p, 〈z, x〉〉 ∈ Ins3 I ↔ 〈p, z〉 ∈ I ) | 
| 74 |   | df-br 4641 | 
. . . . . . . . . . . . . . . 16
⊢ (p I z ↔
〈p,
z〉 ∈ I ) | 
| 75 | 6 | ideq 4871 | 
. . . . . . . . . . . . . . . 16
⊢ (p I z ↔
p = z) | 
| 76 | 74, 75 | bitr3i 242 | 
. . . . . . . . . . . . . . 15
⊢ (〈p, z〉 ∈ I ↔ p =
z) | 
| 77 | 73, 76 | bitri 240 | 
. . . . . . . . . . . . . 14
⊢ (〈p, 〈z, x〉〉 ∈ Ins3 I ↔ p =
z) | 
| 78 | 72, 77 | bibi12i 306 | 
. . . . . . . . . . . . 13
⊢ ((〈p, 〈z, x〉〉 ∈ Ins2 (( NC × V) ∩
((( S  ∘  SI  Pw1Fn ) ⊗
(( SI ◡ S  ⊗
 S ) “ 1c)) “ ℘11c)) ↔ 〈p, 〈z, x〉〉 ∈ Ins3 I ) ↔ ((p
∈ NC ∧ ∃q ∈ ∪xp = Nc ℘1q) ↔ p =
z)) | 
| 79 | 14, 78 | xchbinx 301 | 
. . . . . . . . . . . 12
⊢ (〈p, 〈z, x〉〉 ∈ ( Ins2 (( NC × V) ∩
((( S  ∘  SI  Pw1Fn ) ⊗
(( SI ◡ S  ⊗
 S ) “ 1c)) “ ℘11c)) ⊕
Ins3 I ) ↔ ¬ ((p ∈ NC ∧ ∃q ∈ ∪xp = Nc ℘1q) ↔ p =
z)) | 
| 80 | 79 | exbii 1582 | 
. . . . . . . . . . 11
⊢ (∃p〈p, 〈z, x〉〉 ∈ ( Ins2 (( NC × V) ∩
((( S  ∘  SI  Pw1Fn ) ⊗
(( SI ◡ S  ⊗
 S ) “ 1c)) “ ℘11c)) ⊕
Ins3 I ) ↔ ∃p ¬
((p ∈
NC ∧ ∃q ∈ ∪xp = Nc ℘1q) ↔ p =
z)) | 
| 81 |   | exnal 1574 | 
. . . . . . . . . . 11
⊢ (∃p ¬
((p ∈
NC ∧ ∃q ∈ ∪xp = Nc ℘1q) ↔ p =
z) ↔ ¬ ∀p((p ∈ NC ∧ ∃q ∈ ∪xp = Nc ℘1q) ↔ p =
z)) | 
| 82 | 13, 80, 81 | 3bitrri 263 | 
. . . . . . . . . 10
⊢ (¬ ∀p((p ∈ NC ∧ ∃q ∈ ∪xp = Nc ℘1q) ↔ p =
z) ↔ 〈z, x〉 ∈ ran ( Ins2 (( NC × V) ∩ ((( S 
∘  SI  Pw1Fn ) ⊗ (( SI
◡ S
 ⊗  S ) “
1c)) “ ℘11c)) ⊕
Ins3 I )) | 
| 83 | 82 | con1bii 321 | 
. . . . . . . . 9
⊢ (¬ 〈z, x〉 ∈ ran ( Ins2 (( NC × V) ∩ ((( S 
∘  SI  Pw1Fn ) ⊗ (( SI
◡ S
 ⊗  S ) “
1c)) “ ℘11c)) ⊕
Ins3 I ) ↔ ∀p((p ∈ NC ∧ ∃q ∈ ∪xp = Nc ℘1q) ↔ p =
z)) | 
| 84 | 12, 83 | bitri 240 | 
. . . . . . . 8
⊢ (〈z, x〉 ∈ ∼ ran ( Ins2 ((
NC × V) ∩ ((( S
 ∘  SI 
Pw1Fn ) ⊗ (( SI
◡ S
 ⊗  S ) “
1c)) “ ℘11c)) ⊕
Ins3 I ) ↔ ∀p((p ∈ NC ∧ ∃q ∈ ∪xp = Nc ℘1q) ↔ p =
z)) | 
| 85 | 9, 84 | anbi12i 678 | 
. . . . . . 7
⊢ ((〈z, {y}〉 ∈ ◡ S  ∧ 〈z, x〉 ∈ ∼ ran ( Ins2 ((
NC × V) ∩ ((( S
 ∘  SI 
Pw1Fn ) ⊗ (( SI
◡ S
 ⊗  S ) “
1c)) “ ℘11c)) ⊕
Ins3 I )) ↔ (y ∈ z ∧ ∀p((p ∈ NC ∧ ∃q ∈ ∪xp = Nc ℘1q) ↔ p =
z))) | 
| 86 | 2, 85 | bitri 240 | 
. . . . . 6
⊢ (〈z, 〈{y}, x〉〉 ∈ (◡ S  ⊗
∼ ran ( Ins2 (( NC × V) ∩ ((( S 
∘  SI  Pw1Fn ) ⊗ (( SI
◡ S
 ⊗  S ) “
1c)) “ ℘11c)) ⊕
Ins3 I )) ↔ (y ∈ z ∧ ∀p((p ∈ NC ∧ ∃q ∈ ∪xp = Nc ℘1q) ↔ p =
z))) | 
| 87 | 86 | exbii 1582 | 
. . . . 5
⊢ (∃z〈z, 〈{y}, x〉〉 ∈ (◡ S  ⊗
∼ ran ( Ins2 (( NC × V) ∩ ((( S 
∘  SI  Pw1Fn ) ⊗ (( SI
◡ S
 ⊗  S ) “
1c)) “ ℘11c)) ⊕
Ins3 I )) ↔ ∃z(y ∈ z ∧ ∀p((p ∈ NC ∧ ∃q ∈ ∪xp = Nc ℘1q) ↔ p =
z))) | 
| 88 |   | elrn2 4898 | 
. . . . 5
⊢ (〈{y}, x〉 ∈ ran (◡ S  ⊗
∼ ran ( Ins2 (( NC × V) ∩ ((( S 
∘  SI  Pw1Fn ) ⊗ (( SI
◡ S
 ⊗  S ) “
1c)) “ ℘11c)) ⊕
Ins3 I )) ↔ ∃z〈z, 〈{y}, x〉〉 ∈ (◡ S  ⊗
∼ ran ( Ins2 (( NC × V) ∩ ((( S 
∘  SI  Pw1Fn ) ⊗ (( SI
◡ S
 ⊗  S ) “
1c)) “ ℘11c)) ⊕
Ins3 I ))) | 
| 89 |   | df-tc 6104 | 
. . . . . . . 8
⊢  Tc ∪x = (℩p(p ∈ NC ∧ ∃q ∈ ∪xp = Nc ℘1q)) | 
| 90 |   | dfiota2 4341 | 
. . . . . . . 8
⊢ (℩p(p ∈ NC ∧ ∃q ∈ ∪xp = Nc ℘1q)) = ∪{z ∣ ∀p((p ∈ NC ∧ ∃q ∈ ∪xp = Nc ℘1q) ↔ p =
z)} | 
| 91 | 89, 90 | eqtri 2373 | 
. . . . . . 7
⊢  Tc ∪x = ∪{z ∣ ∀p((p ∈ NC ∧ ∃q ∈ ∪xp = Nc ℘1q) ↔ p =
z)} | 
| 92 | 91 | eleq2i 2417 | 
. . . . . 6
⊢ (y ∈ Tc ∪x ↔ y ∈ ∪{z ∣ ∀p((p ∈ NC ∧ ∃q ∈ ∪xp = Nc ℘1q) ↔ p =
z)}) | 
| 93 |   | eluniab 3904 | 
. . . . . 6
⊢ (y ∈ ∪{z ∣ ∀p((p ∈ NC ∧ ∃q ∈ ∪xp = Nc ℘1q) ↔ p =
z)} ↔ ∃z(y ∈ z ∧ ∀p((p ∈ NC ∧ ∃q ∈ ∪xp = Nc ℘1q) ↔ p =
z))) | 
| 94 | 92, 93 | bitri 240 | 
. . . . 5
⊢ (y ∈ Tc ∪x ↔ ∃z(y ∈ z ∧ ∀p((p ∈ NC ∧ ∃q ∈ ∪xp = Nc ℘1q) ↔ p =
z))) | 
| 95 | 87, 88, 94 | 3bitr4i 268 | 
. . . 4
⊢ (〈{y}, x〉 ∈ ran (◡ S  ⊗
∼ ran ( Ins2 (( NC × V) ∩ ((( S 
∘  SI  Pw1Fn ) ⊗ (( SI
◡ S
 ⊗  S ) “
1c)) “ ℘11c)) ⊕
Ins3 I )) ↔ y ∈ Tc ∪x) | 
| 96 | 95 | releqmpt 5809 | 
. . 3
⊢
((1c × V) ∩ ◡ ∼ (( Ins3
 S  ⊕ Ins2 ran
(◡ S 
⊗ ∼ ran ( Ins2 (( NC × V) ∩ ((( S 
∘  SI  Pw1Fn ) ⊗ (( SI
◡ S
 ⊗  S ) “
1c)) “ ℘11c)) ⊕
Ins3 I ))) “ 1c)) =
(x ∈
1c ↦ Tc ∪x) | 
| 97 | 1, 96 | eqtr4i 2376 | 
. 2
⊢ TcFn =
((1c × V) ∩ ◡ ∼ (( Ins3
 S  ⊕ Ins2 ran
(◡ S 
⊗ ∼ ran ( Ins2 (( NC × V) ∩ ((( S 
∘  SI  Pw1Fn ) ⊗ (( SI
◡ S
 ⊗  S ) “
1c)) “ ℘11c)) ⊕
Ins3 I ))) “
1c)) | 
| 98 |   | 1cex 4143 | 
. . 3
⊢
1c ∈
V | 
| 99 |   | ssetex 4745 | 
. . . . . 6
⊢  S  ∈
V | 
| 100 | 99 | cnvex 5103 | 
. . . . 5
⊢ ◡ S  ∈ V | 
| 101 |   | ncsex 6112 | 
. . . . . . . . . . 11
⊢  NC ∈
V | 
| 102 |   | vvex 4110 | 
. . . . . . . . . . 11
⊢ V ∈ V | 
| 103 | 101, 102 | xpex 5116 | 
. . . . . . . . . 10
⊢ ( NC × V) ∈
V | 
| 104 |   | pw1fnex 5853 | 
. . . . . . . . . . . . . 14
⊢  Pw1Fn ∈
V | 
| 105 | 104 | siex 4754 | 
. . . . . . . . . . . . 13
⊢  SI  Pw1Fn ∈ V | 
| 106 | 99, 105 | coex 4751 | 
. . . . . . . . . . . 12
⊢ ( S  ∘  SI  Pw1Fn ) ∈ V | 
| 107 | 100 | siex 4754 | 
. . . . . . . . . . . . . 14
⊢  SI ◡ S  ∈
V | 
| 108 | 107, 99 | txpex 5786 | 
. . . . . . . . . . . . 13
⊢ ( SI ◡ S  ⊗  S ) ∈ V | 
| 109 | 108, 98 | imaex 4748 | 
. . . . . . . . . . . 12
⊢ (( SI ◡ S  ⊗  S ) “
1c) ∈ V | 
| 110 | 106, 109 | txpex 5786 | 
. . . . . . . . . . 11
⊢ (( S  ∘  SI  Pw1Fn ) ⊗
(( SI ◡ S  ⊗
 S ) “ 1c)) ∈ V | 
| 111 | 98 | pw1ex 4304 | 
. . . . . . . . . . 11
⊢ ℘11c ∈ V | 
| 112 | 110, 111 | imaex 4748 | 
. . . . . . . . . 10
⊢ ((( S  ∘  SI  Pw1Fn ) ⊗
(( SI ◡ S  ⊗
 S ) “ 1c)) “ ℘11c) ∈ V | 
| 113 | 103, 112 | inex 4106 | 
. . . . . . . . 9
⊢ (( NC × V) ∩ ((( S 
∘  SI  Pw1Fn ) ⊗ (( SI
◡ S
 ⊗  S ) “
1c)) “ ℘11c)) ∈ V | 
| 114 | 113 | ins2ex 5798 | 
. . . . . . . 8
⊢  Ins2 (( NC × V) ∩
((( S  ∘  SI  Pw1Fn ) ⊗
(( SI ◡ S  ⊗
 S ) “ 1c)) “ ℘11c)) ∈ V | 
| 115 |   | idex 5505 | 
. . . . . . . . 9
⊢  I ∈ V | 
| 116 | 115 | ins3ex 5799 | 
. . . . . . . 8
⊢  Ins3 I ∈
V | 
| 117 | 114, 116 | symdifex 4109 | 
. . . . . . 7
⊢ ( Ins2 (( NC × V) ∩
((( S  ∘  SI  Pw1Fn ) ⊗
(( SI ◡ S  ⊗
 S ) “ 1c)) “ ℘11c)) ⊕
Ins3 I ) ∈
V | 
| 118 | 117 | rnex 5108 | 
. . . . . 6
⊢ ran ( Ins2 (( NC × V) ∩
((( S  ∘  SI  Pw1Fn ) ⊗
(( SI ◡ S  ⊗
 S ) “ 1c)) “ ℘11c)) ⊕
Ins3 I ) ∈
V | 
| 119 | 118 | complex 4105 | 
. . . . 5
⊢  ∼ ran ( Ins2 (( NC × V) ∩
((( S  ∘  SI  Pw1Fn ) ⊗
(( SI ◡ S  ⊗
 S ) “ 1c)) “ ℘11c)) ⊕
Ins3 I ) ∈
V | 
| 120 | 100, 119 | txpex 5786 | 
. . . 4
⊢ (◡ S  ⊗
∼ ran ( Ins2 (( NC × V) ∩ ((( S 
∘  SI  Pw1Fn ) ⊗ (( SI
◡ S
 ⊗  S ) “
1c)) “ ℘11c)) ⊕
Ins3 I )) ∈
V | 
| 121 | 120 | rnex 5108 | 
. . 3
⊢ ran (◡ S  ⊗
∼ ran ( Ins2 (( NC × V) ∩ ((( S 
∘  SI  Pw1Fn ) ⊗ (( SI
◡ S
 ⊗  S ) “
1c)) “ ℘11c)) ⊕
Ins3 I )) ∈
V | 
| 122 | 98, 121 | mptexlem 5811 | 
. 2
⊢
((1c × V) ∩ ◡ ∼ (( Ins3
 S  ⊕ Ins2 ran
(◡ S 
⊗ ∼ ran ( Ins2 (( NC × V) ∩ ((( S 
∘  SI  Pw1Fn ) ⊗ (( SI
◡ S
 ⊗  S ) “
1c)) “ ℘11c)) ⊕
Ins3 I ))) “ 1c)) ∈ V | 
| 123 | 97, 122 | eqeltri 2423 | 
1
⊢ TcFn ∈ V |