NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  tcfnex GIF version

Theorem tcfnex 6245
Description: The stratified T raising function is a set. (Contributed by SF, 18-Mar-2015.)
Assertion
Ref Expression
tcfnex TcFn V

Proof of Theorem tcfnex
Dummy variables q p x z y t u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-tcfn 6108 . . 3 TcFn = (x 1c Tc x)
2 oteltxp 5783 . . . . . . 7 (z, {y}, x ( S ⊗ ∼ ran ( Ins2 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ⊕ Ins3 I )) ↔ (z, {y} S z, x ∼ ran ( Ins2 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ⊕ Ins3 I )))
3 df-br 4641 . . . . . . . . 9 (z S {y} ↔ z, {y} S )
4 brcnv 4893 . . . . . . . . . 10 (z S {y} ↔ {y} S z)
5 vex 2863 . . . . . . . . . . 11 y V
6 vex 2863 . . . . . . . . . . 11 z V
75, 6brssetsn 4760 . . . . . . . . . 10 ({y} S zy z)
84, 7bitri 240 . . . . . . . . 9 (z S {y} ↔ y z)
93, 8bitr3i 242 . . . . . . . 8 (z, {y} S y z)
10 vex 2863 . . . . . . . . . . 11 x V
116, 10opex 4589 . . . . . . . . . 10 z, x V
1211elcompl 3226 . . . . . . . . 9 (z, x ∼ ran ( Ins2 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ⊕ Ins3 I ) ↔ ¬ z, x ran ( Ins2 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ⊕ Ins3 I ))
13 elrn2 4898 . . . . . . . . . . 11 (z, x ran ( Ins2 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ⊕ Ins3 I ) ↔ pp, z, x ( Ins2 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ⊕ Ins3 I ))
14 elsymdif 3224 . . . . . . . . . . . . 13 (p, z, x ( Ins2 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ⊕ Ins3 I ) ↔ ¬ (p, z, x Ins2 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ↔ p, z, x Ins3 I ))
156otelins2 5792 . . . . . . . . . . . . . . 15 (p, z, x Ins2 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ↔ p, x (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)))
16 elin 3220 . . . . . . . . . . . . . . 15 (p, x (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ↔ (p, x ( NC × V) p, x ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)))
17 opelxp 4812 . . . . . . . . . . . . . . . . . 18 (p, x ( NC × V) ↔ (p NC x V))
1810, 17mpbiran2 885 . . . . . . . . . . . . . . . . 17 (p, x ( NC × V) ↔ p NC )
1918anbi1i 676 . . . . . . . . . . . . . . . 16 ((p, x ( NC × V) p, x ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ↔ (p NC p, x ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)))
20 ncseqnc 6129 . . . . . . . . . . . . . . . . . . 19 (p NC → (p = Nc 1q1q p))
2120rexbidv 2636 . . . . . . . . . . . . . . . . . 18 (p NC → (q xp = Nc 1qq x1q p))
22 oteltxp 5783 . . . . . . . . . . . . . . . . . . . . 21 ({{q}}, p, x (( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) ↔ ({{q}}, p ( S SI Pw1Fn ) {{q}}, x (( SI S S ) “ 1c)))
23 snex 4112 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 {q} V
2423brsnsi1 5776 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ({{q}} SI Pw1Fn ut(u = {t} {q} Pw1Fn t))
2524anbi1i 676 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (({{q}} SI Pw1Fn u u S p) ↔ (t(u = {t} {q} Pw1Fn t) u S p))
26 19.41v 1901 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (t((u = {t} {q} Pw1Fn t) u S p) ↔ (t(u = {t} {q} Pw1Fn t) u S p))
2725, 26bitr4i 243 . . . . . . . . . . . . . . . . . . . . . . . . 25 (({{q}} SI Pw1Fn u u S p) ↔ t((u = {t} {q} Pw1Fn t) u S p))
2827exbii 1582 . . . . . . . . . . . . . . . . . . . . . . . 24 (u({{q}} SI Pw1Fn u u S p) ↔ ut((u = {t} {q} Pw1Fn t) u S p))
29 excom 1741 . . . . . . . . . . . . . . . . . . . . . . . 24 (ut((u = {t} {q} Pw1Fn t) u S p) ↔ tu((u = {t} {q} Pw1Fn t) u S p))
30 anass 630 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((u = {t} {q} Pw1Fn t) u S p) ↔ (u = {t} ({q} Pw1Fn t u S p)))
3130exbii 1582 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (u((u = {t} {q} Pw1Fn t) u S p) ↔ u(u = {t} ({q} Pw1Fn t u S p)))
32 snex 4112 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 {t} V
33 breq1 4643 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (u = {t} → (u S p ↔ {t} S p))
3433anbi2d 684 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (u = {t} → (({q} Pw1Fn t u S p) ↔ ({q} Pw1Fn t {t} S p)))
3532, 34ceqsexv 2895 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (u(u = {t} ({q} Pw1Fn t u S p)) ↔ ({q} Pw1Fn t {t} S p))
36 vex 2863 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 q V
3736brpw1fn 5855 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ({q} Pw1Fn tt = 1q)
38 vex 2863 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 t V
39 vex 2863 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 p V
4038, 39brssetsn 4760 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ({t} S pt p)
4137, 40anbi12i 678 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (({q} Pw1Fn t {t} S p) ↔ (t = 1q t p))
4231, 35, 413bitri 262 . . . . . . . . . . . . . . . . . . . . . . . . 25 (u((u = {t} {q} Pw1Fn t) u S p) ↔ (t = 1q t p))
4342exbii 1582 . . . . . . . . . . . . . . . . . . . . . . . 24 (tu((u = {t} {q} Pw1Fn t) u S p) ↔ t(t = 1q t p))
4428, 29, 433bitri 262 . . . . . . . . . . . . . . . . . . . . . . 23 (u({{q}} SI Pw1Fn u u S p) ↔ t(t = 1q t p))
45 opelco 4885 . . . . . . . . . . . . . . . . . . . . . . 23 ({{q}}, p ( S SI Pw1Fn ) ↔ u({{q}} SI Pw1Fn u u S p))
46 df-clel 2349 . . . . . . . . . . . . . . . . . . . . . . 23 (1q pt(t = 1q t p))
4744, 45, 463bitr4i 268 . . . . . . . . . . . . . . . . . . . . . 22 ({{q}}, p ( S SI Pw1Fn ) ↔ 1q p)
48 oteltxp 5783 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({t}, {{q}}, x ( SI S S ) ↔ ({t}, {{q}} SI S {t}, x S ))
49 df-br 4641 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ({t} SI S {{q}} ↔ {t}, {{q}} SI S )
5038, 23brsnsi 5774 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ({t} SI S {{q}} ↔ t S {q})
51 brcnv 4893 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (t S {q} ↔ {q} S t)
5236, 38brssetsn 4760 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ({q} S tq t)
5350, 51, 523bitri 262 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ({t} SI S {{q}} ↔ q t)
5449, 53bitr3i 242 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ({t}, {{q}} SI S q t)
5538, 10opelssetsn 4761 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ({t}, x S t x)
5654, 55anbi12i 678 . . . . . . . . . . . . . . . . . . . . . . . . 25 (({t}, {{q}} SI S {t}, x S ) ↔ (q t t x))
5748, 56bitri 240 . . . . . . . . . . . . . . . . . . . . . . . 24 ({t}, {{q}}, x ( SI S S ) ↔ (q t t x))
5857exbii 1582 . . . . . . . . . . . . . . . . . . . . . . 23 (t{t}, {{q}}, x ( SI S S ) ↔ t(q t t x))
59 elima1c 4948 . . . . . . . . . . . . . . . . . . . . . . 23 ({{q}}, x (( SI S S ) “ 1c) ↔ t{t}, {{q}}, x ( SI S S ))
60 eluni 3895 . . . . . . . . . . . . . . . . . . . . . . 23 (q xt(q t t x))
6158, 59, 603bitr4i 268 . . . . . . . . . . . . . . . . . . . . . 22 ({{q}}, x (( SI S S ) “ 1c) ↔ q x)
6247, 61anbi12i 678 . . . . . . . . . . . . . . . . . . . . 21 (({{q}}, p ( S SI Pw1Fn ) {{q}}, x (( SI S S ) “ 1c)) ↔ (1q p q x))
63 ancom 437 . . . . . . . . . . . . . . . . . . . . 21 ((1q p q x) ↔ (q x 1q p))
6422, 62, 633bitri 262 . . . . . . . . . . . . . . . . . . . 20 ({{q}}, p, x (( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) ↔ (q x 1q p))
6564exbii 1582 . . . . . . . . . . . . . . . . . . 19 (q{{q}}, p, x (( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) ↔ q(q x 1q p))
66 elimapw11c 4949 . . . . . . . . . . . . . . . . . . 19 (p, x ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c) ↔ q{{q}}, p, x (( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)))
67 df-rex 2621 . . . . . . . . . . . . . . . . . . 19 (q x1q pq(q x 1q p))
6865, 66, 673bitr4i 268 . . . . . . . . . . . . . . . . . 18 (p, x ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c) ↔ q x1q p)
6921, 68syl6rbbr 255 . . . . . . . . . . . . . . . . 17 (p NC → (p, x ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c) ↔ q xp = Nc 1q))
7069pm5.32i 618 . . . . . . . . . . . . . . . 16 ((p NC p, x ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ↔ (p NC q xp = Nc 1q))
7119, 70bitri 240 . . . . . . . . . . . . . . 15 ((p, x ( NC × V) p, x ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ↔ (p NC q xp = Nc 1q))
7215, 16, 713bitri 262 . . . . . . . . . . . . . 14 (p, z, x Ins2 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ↔ (p NC q xp = Nc 1q))
7310otelins3 5793 . . . . . . . . . . . . . . 15 (p, z, x Ins3 I ↔ p, z I )
74 df-br 4641 . . . . . . . . . . . . . . . 16 (p I zp, z I )
756ideq 4871 . . . . . . . . . . . . . . . 16 (p I zp = z)
7674, 75bitr3i 242 . . . . . . . . . . . . . . 15 (p, z I ↔ p = z)
7773, 76bitri 240 . . . . . . . . . . . . . 14 (p, z, x Ins3 I ↔ p = z)
7872, 77bibi12i 306 . . . . . . . . . . . . 13 ((p, z, x Ins2 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ↔ p, z, x Ins3 I ) ↔ ((p NC q xp = Nc 1q) ↔ p = z))
7914, 78xchbinx 301 . . . . . . . . . . . 12 (p, z, x ( Ins2 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ⊕ Ins3 I ) ↔ ¬ ((p NC q xp = Nc 1q) ↔ p = z))
8079exbii 1582 . . . . . . . . . . 11 (pp, z, x ( Ins2 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ⊕ Ins3 I ) ↔ p ¬ ((p NC q xp = Nc 1q) ↔ p = z))
81 exnal 1574 . . . . . . . . . . 11 (p ¬ ((p NC q xp = Nc 1q) ↔ p = z) ↔ ¬ p((p NC q xp = Nc 1q) ↔ p = z))
8213, 80, 813bitrri 263 . . . . . . . . . 10 p((p NC q xp = Nc 1q) ↔ p = z) ↔ z, x ran ( Ins2 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ⊕ Ins3 I ))
8382con1bii 321 . . . . . . . . 9 z, x ran ( Ins2 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ⊕ Ins3 I ) ↔ p((p NC q xp = Nc 1q) ↔ p = z))
8412, 83bitri 240 . . . . . . . 8 (z, x ∼ ran ( Ins2 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ⊕ Ins3 I ) ↔ p((p NC q xp = Nc 1q) ↔ p = z))
859, 84anbi12i 678 . . . . . . 7 ((z, {y} S z, x ∼ ran ( Ins2 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ⊕ Ins3 I )) ↔ (y z p((p NC q xp = Nc 1q) ↔ p = z)))
862, 85bitri 240 . . . . . 6 (z, {y}, x ( S ⊗ ∼ ran ( Ins2 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ⊕ Ins3 I )) ↔ (y z p((p NC q xp = Nc 1q) ↔ p = z)))
8786exbii 1582 . . . . 5 (zz, {y}, x ( S ⊗ ∼ ran ( Ins2 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ⊕ Ins3 I )) ↔ z(y z p((p NC q xp = Nc 1q) ↔ p = z)))
88 elrn2 4898 . . . . 5 ({y}, x ran ( S ⊗ ∼ ran ( Ins2 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ⊕ Ins3 I )) ↔ zz, {y}, x ( S ⊗ ∼ ran ( Ins2 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ⊕ Ins3 I )))
89 df-tc 6104 . . . . . . . 8 Tc x = (℩p(p NC q xp = Nc 1q))
90 dfiota2 4341 . . . . . . . 8 (℩p(p NC q xp = Nc 1q)) = {z p((p NC q xp = Nc 1q) ↔ p = z)}
9189, 90eqtri 2373 . . . . . . 7 Tc x = {z p((p NC q xp = Nc 1q) ↔ p = z)}
9291eleq2i 2417 . . . . . 6 (y Tc xy {z p((p NC q xp = Nc 1q) ↔ p = z)})
93 eluniab 3904 . . . . . 6 (y {z p((p NC q xp = Nc 1q) ↔ p = z)} ↔ z(y z p((p NC q xp = Nc 1q) ↔ p = z)))
9492, 93bitri 240 . . . . 5 (y Tc xz(y z p((p NC q xp = Nc 1q) ↔ p = z)))
9587, 88, 943bitr4i 268 . . . 4 ({y}, x ran ( S ⊗ ∼ ran ( Ins2 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ⊕ Ins3 I )) ↔ y Tc x)
9695releqmpt 5809 . . 3 ((1c × V) ∩ ∼ (( Ins3 S Ins2 ran ( S ⊗ ∼ ran ( Ins2 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ⊕ Ins3 I ))) “ 1c)) = (x 1c Tc x)
971, 96eqtr4i 2376 . 2 TcFn = ((1c × V) ∩ ∼ (( Ins3 S Ins2 ran ( S ⊗ ∼ ran ( Ins2 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ⊕ Ins3 I ))) “ 1c))
98 1cex 4143 . . 3 1c V
99 ssetex 4745 . . . . . 6 S V
10099cnvex 5103 . . . . 5 S V
101 ncsex 6112 . . . . . . . . . . 11 NC V
102 vvex 4110 . . . . . . . . . . 11 V V
103101, 102xpex 5116 . . . . . . . . . 10 ( NC × V) V
104 pw1fnex 5853 . . . . . . . . . . . . . 14 Pw1Fn V
105104siex 4754 . . . . . . . . . . . . 13 SI Pw1Fn V
10699, 105coex 4751 . . . . . . . . . . . 12 ( S SI Pw1Fn ) V
107100siex 4754 . . . . . . . . . . . . . 14 SI S V
108107, 99txpex 5786 . . . . . . . . . . . . 13 ( SI S S ) V
109108, 98imaex 4748 . . . . . . . . . . . 12 (( SI S S ) “ 1c) V
110106, 109txpex 5786 . . . . . . . . . . 11 (( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) V
11198pw1ex 4304 . . . . . . . . . . 11 11c V
112110, 111imaex 4748 . . . . . . . . . 10 ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c) V
113103, 112inex 4106 . . . . . . . . 9 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) V
114113ins2ex 5798 . . . . . . . 8 Ins2 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) V
115 idex 5505 . . . . . . . . 9 I V
116115ins3ex 5799 . . . . . . . 8 Ins3 I V
117114, 116symdifex 4109 . . . . . . 7 ( Ins2 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ⊕ Ins3 I ) V
118117rnex 5108 . . . . . 6 ran ( Ins2 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ⊕ Ins3 I ) V
119118complex 4105 . . . . 5 ∼ ran ( Ins2 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ⊕ Ins3 I ) V
120100, 119txpex 5786 . . . 4 ( S ⊗ ∼ ran ( Ins2 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ⊕ Ins3 I )) V
121120rnex 5108 . . 3 ran ( S ⊗ ∼ ran ( Ins2 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ⊕ Ins3 I )) V
12298, 121mptexlem 5811 . 2 ((1c × V) ∩ ∼ (( Ins3 S Ins2 ran ( S ⊗ ∼ ran ( Ins2 (( NC × V) ∩ ((( S SI Pw1Fn ) ⊗ (( SI S S ) “ 1c)) “ 11c)) ⊕ Ins3 I ))) “ 1c)) V
12397, 122eqeltri 2423 1 TcFn V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176   wa 358  wal 1540  wex 1541   = wceq 1642   wcel 1710  {cab 2339  wrex 2616  Vcvv 2860  ccompl 3206  cin 3209  csymdif 3210  {csn 3738  cuni 3892  1cc1c 4135  1cpw1 4136  cio 4338  cop 4562   class class class wbr 4640   S csset 4720   SI csi 4721   ccom 4722  cima 4723   I cid 4764   × cxp 4771  ccnv 4772  ran crn 4774   cmpt 5652  ctxp 5736   Ins2 cins2 5750   Ins3 cins3 5752   Pw1Fn cpw1fn 5766   NC cncs 6089   Nc cnc 6092   Tc ctc 6094  TcFnctcfn 6098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-fv 4796  df-2nd 4798  df-mpt 5653  df-txp 5737  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-pw1fn 5767  df-trans 5900  df-sym 5909  df-er 5910  df-ec 5948  df-qs 5952  df-en 6030  df-ncs 6099  df-nc 6102  df-tc 6104  df-tcfn 6108
This theorem is referenced by:  nmembers1lem1  6269  nchoicelem11  6300  nchoicelem16  6305
  Copyright terms: Public domain W3C validator