NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eqtc GIF version

Theorem eqtc 6162
Description: The defining property of the cardinal T operation. (Contributed by SF, 2-Mar-2015.)
Assertion
Ref Expression
eqtc (A NC → ( Tc A = Bx A B = Nc 1x))
Distinct variable groups:   x,A   x,B

Proof of Theorem eqtc
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 simpr 447 . . . 4 ((A NC Tc A = B) → Tc A = B)
2 tccl 6161 . . . . 5 (A NCTc A NC )
32adantr 451 . . . 4 ((A NC Tc A = B) → Tc A NC )
41, 3eqeltrrd 2428 . . 3 ((A NC Tc A = B) → B NC )
54ex 423 . 2 (A NC → ( Tc A = BB NC ))
6 vex 2863 . . . . . . 7 x V
76pw1ex 4304 . . . . . 6 1x V
87ncelncsi 6122 . . . . 5 Nc 1x NC
9 eleq1 2413 . . . . 5 (B = Nc 1x → (B NCNc 1x NC ))
108, 9mpbiri 224 . . . 4 (B = Nc 1xB NC )
1110rexlimivw 2735 . . 3 (x A B = Nc 1xB NC )
1211a1i 10 . 2 (A NC → (x A B = Nc 1xB NC ))
13 ncspw1eu 6160 . . . . . 6 (A NC∃!y NC x A y = Nc 1x)
14 eqeq1 2359 . . . . . . . 8 (y = B → (y = Nc 1xB = Nc 1x))
1514rexbidv 2636 . . . . . . 7 (y = B → (x A y = Nc 1xx A B = Nc 1x))
1615reiota2 4369 . . . . . 6 ((B NC ∃!y NC x A y = Nc 1x) → (x A B = Nc 1x ↔ (℩y(y NC x A y = Nc 1x)) = B))
1713, 16sylan2 460 . . . . 5 ((B NC A NC ) → (x A B = Nc 1x ↔ (℩y(y NC x A y = Nc 1x)) = B))
1817ancoms 439 . . . 4 ((A NC B NC ) → (x A B = Nc 1x ↔ (℩y(y NC x A y = Nc 1x)) = B))
19 df-tc 6104 . . . . 5 Tc A = (℩y(y NC x A y = Nc 1x))
2019eqeq1i 2360 . . . 4 ( Tc A = B ↔ (℩y(y NC x A y = Nc 1x)) = B)
2118, 20syl6rbbr 255 . . 3 ((A NC B NC ) → ( Tc A = Bx A B = Nc 1x))
2221ex 423 . 2 (A NC → (B NC → ( Tc A = Bx A B = Nc 1x)))
235, 12, 22pm5.21ndd 343 1 (A NC → ( Tc A = Bx A B = Nc 1x))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642   wcel 1710  wrex 2616  ∃!wreu 2617  1cpw1 4136  cio 4338   NC cncs 6089   Nc cnc 6092   Tc ctc 6094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-2nd 4798  df-txp 5737  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-trans 5900  df-sym 5909  df-er 5910  df-ec 5948  df-qs 5952  df-en 6030  df-ncs 6099  df-nc 6102  df-tc 6104
This theorem is referenced by:  pw1eltc  6163
  Copyright terms: Public domain W3C validator