New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > tceq | GIF version |
Description: Equality theorem for cardinal T operator. (Contributed by SF, 2-Mar-2015.) |
Ref | Expression |
---|---|
tceq | ⊢ (A = B → Tc A = Tc B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexeq 2809 | . . . 4 ⊢ (A = B → (∃y ∈ A x = Nc ℘1y ↔ ∃y ∈ B x = Nc ℘1y)) | |
2 | 1 | anbi2d 684 | . . 3 ⊢ (A = B → ((x ∈ NC ∧ ∃y ∈ A x = Nc ℘1y) ↔ (x ∈ NC ∧ ∃y ∈ B x = Nc ℘1y))) |
3 | 2 | iotabidv 4361 | . 2 ⊢ (A = B → (℩x(x ∈ NC ∧ ∃y ∈ A x = Nc ℘1y)) = (℩x(x ∈ NC ∧ ∃y ∈ B x = Nc ℘1y))) |
4 | df-tc 6104 | . 2 ⊢ Tc A = (℩x(x ∈ NC ∧ ∃y ∈ A x = Nc ℘1y)) | |
5 | df-tc 6104 | . 2 ⊢ Tc B = (℩x(x ∈ NC ∧ ∃y ∈ B x = Nc ℘1y)) | |
6 | 3, 4, 5 | 3eqtr4g 2410 | 1 ⊢ (A = B → Tc A = Tc B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 ℘1cpw1 4136 ℩cio 4338 NC cncs 6089 Nc cnc 6092 Tc ctc 6094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-uni 3893 df-iota 4340 df-tc 6104 |
This theorem is referenced by: tcdi 6165 tc2c 6167 tc11 6229 taddc 6230 tlecg 6231 letc 6232 ce0t 6233 ce2le 6234 cet 6235 tce2 6237 te0c 6238 ce0lenc1 6240 tlenc1c 6241 brtcfn 6247 nmembers1lem1 6269 nmembers1 6272 nchoicelem1 6290 nchoicelem2 6291 nchoicelem12 6301 nchoicelem16 6305 nchoicelem17 6306 nchoicelem19 6308 nchoice 6309 |
Copyright terms: Public domain | W3C validator |