| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > dfbi1 | GIF version | ||
| Description: Relate the biconditional connective to primitive connectives. See dfbi1gb 185 for an unusual version proved directly from axioms. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| dfbi1 | ⊢ ((φ ↔ ψ) ↔ ¬ ((φ → ψ) → ¬ (ψ → φ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bi 177 | . . 3 ⊢ ¬ (((φ ↔ ψ) → ¬ ((φ → ψ) → ¬ (ψ → φ))) → ¬ (¬ ((φ → ψ) → ¬ (ψ → φ)) → (φ ↔ ψ))) | |
| 2 | simplim 143 | . . 3 ⊢ (¬ (((φ ↔ ψ) → ¬ ((φ → ψ) → ¬ (ψ → φ))) → ¬ (¬ ((φ → ψ) → ¬ (ψ → φ)) → (φ ↔ ψ))) → ((φ ↔ ψ) → ¬ ((φ → ψ) → ¬ (ψ → φ)))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((φ ↔ ψ) → ¬ ((φ → ψ) → ¬ (ψ → φ))) |
| 4 | bi3 179 | . . 3 ⊢ ((φ → ψ) → ((ψ → φ) → (φ ↔ ψ))) | |
| 5 | 4 | impi 140 | . 2 ⊢ (¬ ((φ → ψ) → ¬ (ψ → φ)) → (φ ↔ ψ)) |
| 6 | 3, 5 | impbii 180 | 1 ⊢ ((φ ↔ ψ) ↔ ¬ ((φ → ψ) → ¬ (ψ → φ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 |
| This theorem is referenced by: bi2 189 dfbi2 609 tbw-bijust 1463 rb-bijust 1514 nfbidOLD 1833 |
| Copyright terms: Public domain | W3C validator |