NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dfbi1 GIF version

Theorem dfbi1 184
Description: Relate the biconditional connective to primitive connectives. See dfbi1gb 185 for an unusual version proved directly from axioms. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
dfbi1 ((φψ) ↔ ¬ ((φψ) → ¬ (ψφ)))

Proof of Theorem dfbi1
StepHypRef Expression
1 df-bi 177 . . 3 ¬ (((φψ) → ¬ ((φψ) → ¬ (ψφ))) → ¬ (¬ ((φψ) → ¬ (ψφ)) → (φψ)))
2 simplim 143 . . 3 (¬ (((φψ) → ¬ ((φψ) → ¬ (ψφ))) → ¬ (¬ ((φψ) → ¬ (ψφ)) → (φψ))) → ((φψ) → ¬ ((φψ) → ¬ (ψφ))))
31, 2ax-mp 5 . 2 ((φψ) → ¬ ((φψ) → ¬ (ψφ)))
4 bi3 179 . . 3 ((φψ) → ((ψφ) → (φψ)))
54impi 140 . 2 (¬ ((φψ) → ¬ (ψφ)) → (φψ))
63, 5impbii 180 1 ((φψ) ↔ ¬ ((φψ) → ¬ (ψφ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  bi2  189  dfbi2  609  tbw-bijust  1463  rb-bijust  1514  nfbidOLD  1833
  Copyright terms: Public domain W3C validator