New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rb-bijust | GIF version |
Description: Justification for rb-imdf 1515. (Contributed by Anthony Hart, 17-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rb-bijust | ⊢ ((φ ↔ ψ) ↔ ¬ (¬ (¬ φ ∨ ψ) ∨ ¬ (¬ ψ ∨ φ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi1 184 | . 2 ⊢ ((φ ↔ ψ) ↔ ¬ ((φ → ψ) → ¬ (ψ → φ))) | |
2 | imor 401 | . . . 4 ⊢ ((φ → ψ) ↔ (¬ φ ∨ ψ)) | |
3 | imor 401 | . . . . 5 ⊢ ((ψ → φ) ↔ (¬ ψ ∨ φ)) | |
4 | 3 | notbii 287 | . . . 4 ⊢ (¬ (ψ → φ) ↔ ¬ (¬ ψ ∨ φ)) |
5 | 2, 4 | imbi12i 316 | . . 3 ⊢ (((φ → ψ) → ¬ (ψ → φ)) ↔ ((¬ φ ∨ ψ) → ¬ (¬ ψ ∨ φ))) |
6 | 5 | notbii 287 | . 2 ⊢ (¬ ((φ → ψ) → ¬ (ψ → φ)) ↔ ¬ ((¬ φ ∨ ψ) → ¬ (¬ ψ ∨ φ))) |
7 | pm4.62 408 | . . 3 ⊢ (((¬ φ ∨ ψ) → ¬ (¬ ψ ∨ φ)) ↔ (¬ (¬ φ ∨ ψ) ∨ ¬ (¬ ψ ∨ φ))) | |
8 | 7 | notbii 287 | . 2 ⊢ (¬ ((¬ φ ∨ ψ) → ¬ (¬ ψ ∨ φ)) ↔ ¬ (¬ (¬ φ ∨ ψ) ∨ ¬ (¬ ψ ∨ φ))) |
9 | 1, 6, 8 | 3bitri 262 | 1 ⊢ ((φ ↔ ψ) ↔ ¬ (¬ (¬ φ ∨ ψ) ∨ ¬ (¬ ψ ∨ φ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 |
This theorem is referenced by: rb-imdf 1515 |
Copyright terms: Public domain | W3C validator |