New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > excom13 | GIF version |
Description: Swap 1st and 3rd existential quantifiers. (Contributed by NM, 9-Mar-1995.) |
Ref | Expression |
---|---|
excom13 | ⊢ (∃x∃y∃zφ ↔ ∃z∃y∃xφ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | excom 1741 | . 2 ⊢ (∃x∃y∃zφ ↔ ∃y∃x∃zφ) | |
2 | excom 1741 | . . 3 ⊢ (∃x∃zφ ↔ ∃z∃xφ) | |
3 | 2 | exbii 1582 | . 2 ⊢ (∃y∃x∃zφ ↔ ∃y∃z∃xφ) |
4 | excom 1741 | . 2 ⊢ (∃y∃z∃xφ ↔ ∃z∃y∃xφ) | |
5 | 1, 3, 4 | 3bitri 262 | 1 ⊢ (∃x∃y∃zφ ↔ ∃z∃y∃xφ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-7 1734 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: exrot3 1744 exrot4 1745 |
Copyright terms: Public domain | W3C validator |