New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > excom | GIF version |
Description: Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) (Revised by Wolf Lammen to remove dependency on ax-11 1746 ax-6 1729 ax-9 1654 ax-8 1675 and ax-17 1616, 8-Jan-2018.) |
Ref | Expression |
---|---|
excom | ⊢ (∃x∃yφ ↔ ∃y∃xφ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alcom 1737 | . . . 4 ⊢ (∀x∀y ¬ φ ↔ ∀y∀x ¬ φ) | |
2 | 1 | notbii 287 | . . 3 ⊢ (¬ ∀x∀y ¬ φ ↔ ¬ ∀y∀x ¬ φ) |
3 | exnal 1574 | . . 3 ⊢ (∃x ¬ ∀y ¬ φ ↔ ¬ ∀x∀y ¬ φ) | |
4 | exnal 1574 | . . 3 ⊢ (∃y ¬ ∀x ¬ φ ↔ ¬ ∀y∀x ¬ φ) | |
5 | 2, 3, 4 | 3bitr4i 268 | . 2 ⊢ (∃x ¬ ∀y ¬ φ ↔ ∃y ¬ ∀x ¬ φ) |
6 | df-ex 1542 | . . 3 ⊢ (∃yφ ↔ ¬ ∀y ¬ φ) | |
7 | 6 | exbii 1582 | . 2 ⊢ (∃x∃yφ ↔ ∃x ¬ ∀y ¬ φ) |
8 | df-ex 1542 | . . 3 ⊢ (∃xφ ↔ ¬ ∀x ¬ φ) | |
9 | 8 | exbii 1582 | . 2 ⊢ (∃y∃xφ ↔ ∃y ¬ ∀x ¬ φ) |
10 | 5, 7, 9 | 3bitr4i 268 | 1 ⊢ (∃x∃yφ ↔ ∃y∃xφ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-7 1734 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: excomim 1742 excom13 1743 exrot3 1744 ee4anv 1915 2exsb 2132 2euex 2276 2eu1 2284 2eu4 2287 rexcomf 2771 gencbvex 2902 euind 3024 sbccomlem 3117 elpw11c 4148 elpw121c 4149 elpw131c 4150 elpw141c 4151 elpw151c 4152 elpw161c 4153 elpw171c 4154 elpw181c 4155 elpw191c 4156 elpw1101c 4157 elpw1111c 4158 eluni1g 4173 opkelcokg 4262 opkelimagekg 4272 dfimak2 4299 insklem 4305 ndisjrelk 4324 dfpw2 4328 dfaddc2 4382 dfnnc2 4396 elsuc 4414 nnsucelrlem1 4425 ltfinex 4465 ssfin 4471 eqpwrelk 4479 eqpw1relk 4480 ncfinraiselem2 4481 ncfinlowerlem1 4483 eqtfinrelk 4487 evenfinex 4504 oddfinex 4505 evenodddisjlem1 4516 nnadjoinlem1 4520 nnpweqlem1 4523 srelk 4525 sfintfinlem1 4532 tfinnnlem1 4534 spfinex 4538 vfinspsslem1 4551 dfop2lem1 4574 el1st 4730 setconslem1 4732 setconslem2 4733 setconslem3 4734 setconslem7 4738 df1st2 4739 dfswap2 4742 brswap2 4861 dmuni 4915 dm0rn0 4922 elimapw11c 4949 dmcoss 4972 dmcosseq 4974 rnuni 5039 rnco 5088 coass 5098 df2nd2 5112 cnvswap 5511 cnvsi 5519 dmsi 5520 oprabid 5551 dfoprab2 5559 brsnsi1 5776 brimage 5794 addcfnex 5825 pw1fnf1o 5856 ceexlem1 6174 ce0nnul 6178 el2c 6192 taddc 6230 tcfnex 6245 csucex 6260 nmembers1lem1 6269 nchoicelem11 6300 nchoicelem16 6305 fnfreclem3 6320 |
Copyright terms: Public domain | W3C validator |