| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > exrot4 | GIF version | ||
| Description: Rotate existential quantifiers twice. (Contributed by NM, 9-Mar-1995.) |
| Ref | Expression |
|---|---|
| exrot4 | ⊢ (∃x∃y∃z∃wφ ↔ ∃z∃w∃x∃yφ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excom13 1743 | . . 3 ⊢ (∃y∃z∃wφ ↔ ∃w∃z∃yφ) | |
| 2 | 1 | exbii 1582 | . 2 ⊢ (∃x∃y∃z∃wφ ↔ ∃x∃w∃z∃yφ) |
| 3 | excom13 1743 | . 2 ⊢ (∃x∃w∃z∃yφ ↔ ∃z∃w∃x∃yφ) | |
| 4 | 2, 3 | bitri 240 | 1 ⊢ (∃x∃y∃z∃wφ ↔ ∃z∃w∃x∃yφ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∃wex 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-7 1734 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 |
| This theorem is referenced by: sikexlem 4296 insklem 4305 elswap 4741 dfoprab2 5559 brpprod 5840 lecex 6116 |
| Copyright terms: Public domain | W3C validator |