NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  exlimihOLD GIF version

Theorem exlimihOLD 1805
Description: Obsolete proof of exlimih 1804 as of 1-Jan-2018. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
exlimih.1 (ψxψ)
exlimih.2 (φψ)
Assertion
Ref Expression
exlimihOLD (xφψ)

Proof of Theorem exlimihOLD
StepHypRef Expression
1 exlimih.1 . . 3 (ψxψ)
2119.23h 1802 . 2 (x(φψ) ↔ (xφψ))
3 exlimih.2 . 2 (φψ)
42, 3mpgbi 1549 1 (xφψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator