| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > exlimih | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 1-Jan-2018.) |
| Ref | Expression |
|---|---|
| exlimih.1 | ⊢ (ψ → ∀xψ) |
| exlimih.2 | ⊢ (φ → ψ) |
| Ref | Expression |
|---|---|
| exlimih | ⊢ (∃xφ → ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimih.1 | . . 3 ⊢ (ψ → ∀xψ) | |
| 2 | 1 | nfi 1551 | . 2 ⊢ Ⅎxψ |
| 3 | exlimih.2 | . 2 ⊢ (φ → ψ) | |
| 4 | 2, 3 | exlimi 1803 | 1 ⊢ (∃xφ → ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1540 ∃wex 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: ax12olem5 1931 ax10lem2 1937 a16g 1945 |
| Copyright terms: Public domain | W3C validator |