New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  exlimih GIF version

Theorem exlimih 1804
 Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 1-Jan-2018.)
Hypotheses
Ref Expression
exlimih.1 (ψxψ)
exlimih.2 (φψ)
Assertion
Ref Expression
exlimih (xφψ)

Proof of Theorem exlimih
StepHypRef Expression
1 exlimih.1 . . 3 (ψxψ)
21nfi 1551 . 2 xψ
3 exlimih.2 . 2 (φψ)
42, 3exlimi 1803 1 (xφψ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1540  ∃wex 1541 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746 This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545 This theorem is referenced by:  ax12olem5  1931  ax10lem2  1937  a16g  1945
 Copyright terms: Public domain W3C validator