New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > exlimih | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 1-Jan-2018.) |
Ref | Expression |
---|---|
exlimih.1 | ⊢ (ψ → ∀xψ) |
exlimih.2 | ⊢ (φ → ψ) |
Ref | Expression |
---|---|
exlimih | ⊢ (∃xφ → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimih.1 | . . 3 ⊢ (ψ → ∀xψ) | |
2 | 1 | nfi 1551 | . 2 ⊢ Ⅎxψ |
3 | exlimih.2 | . 2 ⊢ (φ → ψ) | |
4 | 2, 3 | exlimi 1803 | 1 ⊢ (∃xφ → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
This theorem is referenced by: ax12olem5 1931 ax10lem2 1937 a16g 1945 |
Copyright terms: Public domain | W3C validator |