New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > exmo | GIF version |
Description: Something exists or at most one exists. (Contributed by NM, 8-Mar-1995.) |
Ref | Expression |
---|---|
exmo | ⊢ (∃xφ ∨ ∃*xφ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21 100 | . . 3 ⊢ (¬ ∃xφ → (∃xφ → ∃!xφ)) | |
2 | df-mo 2209 | . . 3 ⊢ (∃*xφ ↔ (∃xφ → ∃!xφ)) | |
3 | 1, 2 | sylibr 203 | . 2 ⊢ (¬ ∃xφ → ∃*xφ) |
4 | 3 | orri 365 | 1 ⊢ (∃xφ ∨ ∃*xφ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 357 ∃wex 1541 ∃!weu 2204 ∃*wmo 2205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-mo 2209 |
This theorem is referenced by: moexex 2273 mo2icl 3016 mosubopt 4613 |
Copyright terms: Public domain | W3C validator |