New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > moim | GIF version |
Description: "At most one" is preserved through implication (notice wff reversal). (Contributed by NM, 22-Apr-1995.) |
Ref | Expression |
---|---|
moim | ⊢ (∀x(φ → ψ) → (∃*xψ → ∃*xφ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim1 70 | . . . 4 ⊢ ((φ → ψ) → ((ψ → x = y) → (φ → x = y))) | |
2 | 1 | al2imi 1561 | . . 3 ⊢ (∀x(φ → ψ) → (∀x(ψ → x = y) → ∀x(φ → x = y))) |
3 | 2 | eximdv 1622 | . 2 ⊢ (∀x(φ → ψ) → (∃y∀x(ψ → x = y) → ∃y∀x(φ → x = y))) |
4 | nfv 1619 | . . 3 ⊢ Ⅎyψ | |
5 | 4 | mo2 2233 | . 2 ⊢ (∃*xψ ↔ ∃y∀x(ψ → x = y)) |
6 | nfv 1619 | . . 3 ⊢ Ⅎyφ | |
7 | 6 | mo2 2233 | . 2 ⊢ (∃*xφ ↔ ∃y∀x(φ → x = y)) |
8 | 3, 5, 7 | 3imtr4g 261 | 1 ⊢ (∀x(φ → ψ) → (∃*xψ → ∃*xφ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ∃wex 1541 = wceq 1642 ∃*wmo 2205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 |
This theorem is referenced by: moimi 2251 euimmo 2253 moexex 2273 rmoim 3036 rmoimi2 3038 funmo 5126 |
Copyright terms: Public domain | W3C validator |