New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > orri | GIF version |
Description: Infer implication from disjunction. (Contributed by NM, 11-Jun-1994.) |
Ref | Expression |
---|---|
orri.1 | ⊢ (¬ φ → ψ) |
Ref | Expression |
---|---|
orri | ⊢ (φ ∨ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orri.1 | . 2 ⊢ (¬ φ → ψ) | |
2 | df-or 359 | . 2 ⊢ ((φ ∨ ψ) ↔ (¬ φ → ψ)) | |
3 | 1, 2 | mpbir 200 | 1 ⊢ (φ ∨ ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 |
This theorem is referenced by: orci 379 olci 380 pm2.25 393 exmid 404 pm2.13 407 pm3.12 486 pm5.11 854 pm5.12 855 pm5.14 856 pm5.15 859 pm5.55 867 pm5.54 870 rb-ax2 1518 rb-ax3 1519 rb-ax4 1520 exmo 2249 abvor0 3567 ifeqor 3699 |
Copyright terms: Public domain | W3C validator |