New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mosubopt | GIF version |
Description: "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-Aug-2007.) |
Ref | Expression |
---|---|
mosubopt | ⊢ (∀y∀z∃*xφ → ∃*x∃y∃z(A = 〈y, z〉 ∧ φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 1788 | . . 3 ⊢ Ⅎy∀y∀z∃*xφ | |
2 | nfe1 1732 | . . . 4 ⊢ Ⅎy∃y∃z(A = 〈y, z〉 ∧ φ) | |
3 | 2 | nfmo 2221 | . . 3 ⊢ Ⅎy∃*x∃y∃z(A = 〈y, z〉 ∧ φ) |
4 | nfa1 1788 | . . . . 5 ⊢ Ⅎz∀z∃*xφ | |
5 | nfe1 1732 | . . . . . . 7 ⊢ Ⅎz∃z(A = 〈y, z〉 ∧ φ) | |
6 | 5 | nfex 1843 | . . . . . 6 ⊢ Ⅎz∃y∃z(A = 〈y, z〉 ∧ φ) |
7 | 6 | nfmo 2221 | . . . . 5 ⊢ Ⅎz∃*x∃y∃z(A = 〈y, z〉 ∧ φ) |
8 | copsexg 4608 | . . . . . . . 8 ⊢ (A = 〈y, z〉 → (φ ↔ ∃y∃z(A = 〈y, z〉 ∧ φ))) | |
9 | 8 | mobidv 2239 | . . . . . . 7 ⊢ (A = 〈y, z〉 → (∃*xφ ↔ ∃*x∃y∃z(A = 〈y, z〉 ∧ φ))) |
10 | 9 | biimpcd 215 | . . . . . 6 ⊢ (∃*xφ → (A = 〈y, z〉 → ∃*x∃y∃z(A = 〈y, z〉 ∧ φ))) |
11 | 10 | sps 1754 | . . . . 5 ⊢ (∀z∃*xφ → (A = 〈y, z〉 → ∃*x∃y∃z(A = 〈y, z〉 ∧ φ))) |
12 | 4, 7, 11 | exlimd 1806 | . . . 4 ⊢ (∀z∃*xφ → (∃z A = 〈y, z〉 → ∃*x∃y∃z(A = 〈y, z〉 ∧ φ))) |
13 | 12 | sps 1754 | . . 3 ⊢ (∀y∀z∃*xφ → (∃z A = 〈y, z〉 → ∃*x∃y∃z(A = 〈y, z〉 ∧ φ))) |
14 | 1, 3, 13 | exlimd 1806 | . 2 ⊢ (∀y∀z∃*xφ → (∃y∃z A = 〈y, z〉 → ∃*x∃y∃z(A = 〈y, z〉 ∧ φ))) |
15 | simpl 443 | . . . . . 6 ⊢ ((A = 〈y, z〉 ∧ φ) → A = 〈y, z〉) | |
16 | 15 | 2eximi 1577 | . . . . 5 ⊢ (∃y∃z(A = 〈y, z〉 ∧ φ) → ∃y∃z A = 〈y, z〉) |
17 | 16 | exlimiv 1634 | . . . 4 ⊢ (∃x∃y∃z(A = 〈y, z〉 ∧ φ) → ∃y∃z A = 〈y, z〉) |
18 | 17 | con3i 127 | . . 3 ⊢ (¬ ∃y∃z A = 〈y, z〉 → ¬ ∃x∃y∃z(A = 〈y, z〉 ∧ φ)) |
19 | exmo 2249 | . . . 4 ⊢ (∃x∃y∃z(A = 〈y, z〉 ∧ φ) ∨ ∃*x∃y∃z(A = 〈y, z〉 ∧ φ)) | |
20 | 19 | ori 364 | . . 3 ⊢ (¬ ∃x∃y∃z(A = 〈y, z〉 ∧ φ) → ∃*x∃y∃z(A = 〈y, z〉 ∧ φ)) |
21 | 18, 20 | syl 15 | . 2 ⊢ (¬ ∃y∃z A = 〈y, z〉 → ∃*x∃y∃z(A = 〈y, z〉 ∧ φ)) |
22 | 14, 21 | pm2.61d1 151 | 1 ⊢ (∀y∀z∃*xφ → ∃*x∃y∃z(A = 〈y, z〉 ∧ φ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 ∀wal 1540 ∃wex 1541 = wceq 1642 ∃*wmo 2205 〈cop 4562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 |
This theorem is referenced by: mosubop 4614 funoprabg 5584 |
Copyright terms: Public domain | W3C validator |