Step | Hyp | Ref
| Expression |
1 | | eqeq2 2362 |
. . . . . 6
⊢ (y = A →
(x = y
↔ x = A)) |
2 | 1 | imbi2d 307 |
. . . . 5
⊢ (y = A →
((φ → x = y) ↔
(φ → x = A))) |
3 | 2 | albidv 1625 |
. . . 4
⊢ (y = A →
(∀x(φ →
x = y)
↔ ∀x(φ →
x = A))) |
4 | 3 | imbi1d 308 |
. . 3
⊢ (y = A →
((∀x(φ →
x = y)
→ ∃*xφ) ↔
(∀x(φ →
x = A)
→ ∃*xφ))) |
5 | | 19.8a 1756 |
. . . 4
⊢ (∀x(φ → x = y) →
∃y∀x(φ → x = y)) |
6 | | nfv 1619 |
. . . . 5
⊢ Ⅎyφ |
7 | 6 | mo2 2233 |
. . . 4
⊢ (∃*xφ ↔ ∃y∀x(φ → x = y)) |
8 | 5, 7 | sylibr 203 |
. . 3
⊢ (∀x(φ → x = y) →
∃*xφ) |
9 | 4, 8 | vtoclg 2915 |
. 2
⊢ (A ∈ V →
(∀x(φ →
x = A)
→ ∃*xφ)) |
10 | | vex 2863 |
. . . . . . 7
⊢ x ∈
V |
11 | | eleq1 2413 |
. . . . . . 7
⊢ (x = A →
(x ∈ V
↔ A ∈ V)) |
12 | 10, 11 | mpbii 202 |
. . . . . 6
⊢ (x = A →
A ∈
V) |
13 | 12 | imim2i 13 |
. . . . 5
⊢ ((φ → x = A) →
(φ → A ∈
V)) |
14 | 13 | con3rr3 128 |
. . . 4
⊢ (¬ A ∈ V →
((φ → x = A) →
¬ φ)) |
15 | 14 | alimdv 1621 |
. . 3
⊢ (¬ A ∈ V →
(∀x(φ →
x = A)
→ ∀x ¬ φ)) |
16 | | alnex 1543 |
. . . 4
⊢ (∀x ¬
φ ↔ ¬ ∃xφ) |
17 | | exmo 2249 |
. . . . 5
⊢ (∃xφ ∨ ∃*xφ) |
18 | 17 | ori 364 |
. . . 4
⊢ (¬ ∃xφ → ∃*xφ) |
19 | 16, 18 | sylbi 187 |
. . 3
⊢ (∀x ¬
φ → ∃*xφ) |
20 | 15, 19 | syl6 29 |
. 2
⊢ (¬ A ∈ V →
(∀x(φ →
x = A)
→ ∃*xφ)) |
21 | 9, 20 | pm2.61i 156 |
1
⊢ (∀x(φ → x = A) →
∃*xφ) |