NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  exp5c GIF version

Theorem exp5c 599
Description: An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
Hypothesis
Ref Expression
exp5c.1 (φ → ((ψ χ) → ((θ τ) → η)))
Assertion
Ref Expression
exp5c (φ → (ψ → (χ → (θ → (τη)))))

Proof of Theorem exp5c
StepHypRef Expression
1 exp5c.1 . . 3 (φ → ((ψ χ) → ((θ τ) → η)))
21exp4a 589 . 2 (φ → ((ψ χ) → (θ → (τη))))
32exp3a 425 1 (φ → (ψ → (χ → (θ → (τη)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  ssfin  4470
  Copyright terms: Public domain W3C validator