New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > hadcomb | GIF version |
Description: Commutative law for triple XOR. (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
hadcomb | ⊢ (hadd(φ, ψ, χ) ↔ hadd(φ, χ, ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 227 | . . 3 ⊢ (φ ↔ φ) | |
2 | xorcom 1307 | . . 3 ⊢ ((ψ ⊻ χ) ↔ (χ ⊻ ψ)) | |
3 | 1, 2 | xorbi12i 1314 | . 2 ⊢ ((φ ⊻ (ψ ⊻ χ)) ↔ (φ ⊻ (χ ⊻ ψ))) |
4 | hadass 1386 | . 2 ⊢ (hadd(φ, ψ, χ) ↔ (φ ⊻ (ψ ⊻ χ))) | |
5 | hadass 1386 | . 2 ⊢ (hadd(φ, χ, ψ) ↔ (φ ⊻ (χ ⊻ ψ))) | |
6 | 3, 4, 5 | 3bitr4i 268 | 1 ⊢ (hadd(φ, ψ, χ) ↔ hadd(φ, χ, ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ⊻ wxo 1304 haddwhad 1378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-xor 1305 df-had 1380 |
This theorem is referenced by: hadrot 1390 |
Copyright terms: Public domain | W3C validator |