NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  hadcomb GIF version

Theorem hadcomb 1389
Description: Commutative law for triple XOR. (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
hadcomb (hadd(φ, ψ, χ) ↔ hadd(φ, χ, ψ))

Proof of Theorem hadcomb
StepHypRef Expression
1 biid 227 . . 3 (φφ)
2 xorcom 1307 . . 3 ((ψχ) ↔ (χψ))
31, 2xorbi12i 1314 . 2 ((φ ⊻ (ψχ)) ↔ (φ ⊻ (χψ)))
4 hadass 1386 . 2 (hadd(φ, ψ, χ) ↔ (φ ⊻ (ψχ)))
5 hadass 1386 . 2 (hadd(φ, χ, ψ) ↔ (φ ⊻ (χψ)))
63, 4, 53bitr4i 268 1 (hadd(φ, ψ, χ) ↔ hadd(φ, χ, ψ))
Colors of variables: wff setvar class
Syntax hints:  wb 176  wxo 1304  haddwhad 1378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-xor 1305  df-had 1380
This theorem is referenced by:  hadrot  1390
  Copyright terms: Public domain W3C validator