| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > hadrot | GIF version | ||
| Description: Rotation law for triple XOR. (Contributed by Mario Carneiro, 4-Sep-2016.) |
| Ref | Expression |
|---|---|
| hadrot | ⊢ (hadd(φ, ψ, χ) ↔ hadd(ψ, χ, φ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hadcoma 1388 | . 2 ⊢ (hadd(φ, ψ, χ) ↔ hadd(ψ, φ, χ)) | |
| 2 | hadcomb 1389 | . 2 ⊢ (hadd(ψ, φ, χ) ↔ hadd(ψ, χ, φ)) | |
| 3 | 1, 2 | bitri 240 | 1 ⊢ (hadd(φ, ψ, χ) ↔ hadd(ψ, χ, φ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 haddwhad 1378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-xor 1305 df-had 1380 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |