NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  hadrot GIF version

Theorem hadrot 1390
Description: Rotation law for triple XOR. (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
hadrot (hadd(φ, ψ, χ) ↔ hadd(ψ, χ, φ))

Proof of Theorem hadrot
StepHypRef Expression
1 hadcoma 1388 . 2 (hadd(φ, ψ, χ) ↔ hadd(ψ, φ, χ))
2 hadcomb 1389 . 2 (hadd(ψ, φ, χ) ↔ hadd(ψ, χ, φ))
31, 2bitri 240 1 (hadd(φ, ψ, χ) ↔ hadd(ψ, χ, φ))
Colors of variables: wff setvar class
Syntax hints:  wb 176  haddwhad 1378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-xor 1305  df-had 1380
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator