New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  hbimOLD GIF version

Theorem hbimOLD 1818
 Description: Obsolete proof of hbim 1817 as of 1-Jan-2018. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 3-Mar-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
hbim.1 (φxφ)
hbim.2 (ψxψ)
Assertion
Ref Expression
hbimOLD ((φψ) → x(φψ))

Proof of Theorem hbimOLD
StepHypRef Expression
1 hbim.1 . . . 4 (φxφ)
21hbn 1776 . . 3 φx ¬ φ)
3 pm2.21 100 . . 3 φ → (φψ))
42, 3alrimih 1565 . 2 φx(φψ))
5 hbim.2 . . 3 (ψxψ)
6 ax-1 6 . . 3 (ψ → (φψ))
75, 6alrimih 1565 . 2 (ψx(φψ))
84, 7ja 153 1 ((φψ) → x(φψ))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4  ∀wal 1540 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746 This theorem depends on definitions:  df-bi 177  df-ex 1542 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator