New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > hbimOLD | GIF version |
Description: Obsolete proof of hbim 1817 as of 1-Jan-2018. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 3-Mar-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hbim.1 | ⊢ (φ → ∀xφ) |
hbim.2 | ⊢ (ψ → ∀xψ) |
Ref | Expression |
---|---|
hbimOLD | ⊢ ((φ → ψ) → ∀x(φ → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbim.1 | . . . 4 ⊢ (φ → ∀xφ) | |
2 | 1 | hbn 1776 | . . 3 ⊢ (¬ φ → ∀x ¬ φ) |
3 | pm2.21 100 | . . 3 ⊢ (¬ φ → (φ → ψ)) | |
4 | 2, 3 | alrimih 1565 | . 2 ⊢ (¬ φ → ∀x(φ → ψ)) |
5 | hbim.2 | . . 3 ⊢ (ψ → ∀xψ) | |
6 | ax-1 6 | . . 3 ⊢ (ψ → (φ → ψ)) | |
7 | 5, 6 | alrimih 1565 | . 2 ⊢ (ψ → ∀x(φ → ψ)) |
8 | 4, 7 | ja 153 | 1 ⊢ ((φ → ψ) → ∀x(φ → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |