New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 19.23tOLD | GIF version |
Description: Obsolete proof of 19.23t 1800 as of 1-Jan-2018. (Contributed by NM, 7-Nov-2005.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
19.23tOLD | ⊢ (Ⅎxψ → (∀x(φ → ψ) ↔ (∃xφ → ψ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exim 1575 | . . 3 ⊢ (∀x(φ → ψ) → (∃xφ → ∃xψ)) | |
2 | 19.9t 1779 | . . . 4 ⊢ (Ⅎxψ → (∃xψ ↔ ψ)) | |
3 | 2 | imbi2d 307 | . . 3 ⊢ (Ⅎxψ → ((∃xφ → ∃xψ) ↔ (∃xφ → ψ))) |
4 | 1, 3 | syl5ib 210 | . 2 ⊢ (Ⅎxψ → (∀x(φ → ψ) → (∃xφ → ψ))) |
5 | nfnf1 1790 | . . 3 ⊢ ℲxℲxψ | |
6 | nfe1 1732 | . . . . 5 ⊢ Ⅎx∃xφ | |
7 | 6 | a1i 10 | . . . 4 ⊢ (Ⅎxψ → Ⅎx∃xφ) |
8 | id 19 | . . . 4 ⊢ (Ⅎxψ → Ⅎxψ) | |
9 | 7, 8 | nfimd 1808 | . . 3 ⊢ (Ⅎxψ → Ⅎx(∃xφ → ψ)) |
10 | 19.8a 1756 | . . . . 5 ⊢ (φ → ∃xφ) | |
11 | 10 | a1i 10 | . . . 4 ⊢ (Ⅎxψ → (φ → ∃xφ)) |
12 | 11 | imim1d 69 | . . 3 ⊢ (Ⅎxψ → ((∃xφ → ψ) → (φ → ψ))) |
13 | 5, 9, 12 | alrimdd 1768 | . 2 ⊢ (Ⅎxψ → ((∃xφ → ψ) → ∀x(φ → ψ))) |
14 | 4, 13 | impbid 183 | 1 ⊢ (Ⅎxψ → (∀x(φ → ψ) ↔ (∃xφ → ψ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |