NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  hbnd GIF version

Theorem hbnd 1883
Description: Deduction form of bound-variable hypothesis builder hbn 1776. (Contributed by NM, 3-Jan-2002.)
Hypotheses
Ref Expression
hbnd.1 (φxφ)
hbnd.2 (φ → (ψxψ))
Assertion
Ref Expression
hbnd (φ → (¬ ψx ¬ ψ))

Proof of Theorem hbnd
StepHypRef Expression
1 hbnd.1 . . 3 (φxφ)
2 hbnd.2 . . 3 (φ → (ψxψ))
31, 2alrimih 1565 . 2 (φx(ψxψ))
4 hbnt 1775 . 2 (x(ψxψ) → (¬ ψx ¬ ψ))
53, 4syl 15 1 (φ → (¬ ψx ¬ ψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator