| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > aaan | GIF version | ||
| Description: Rearrange universal quantifiers. (Contributed by NM, 12-Aug-1993.) |
| Ref | Expression |
|---|---|
| aaan.1 | ⊢ Ⅎyφ |
| aaan.2 | ⊢ Ⅎxψ |
| Ref | Expression |
|---|---|
| aaan | ⊢ (∀x∀y(φ ∧ ψ) ↔ (∀xφ ∧ ∀yψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aaan.1 | . . . 4 ⊢ Ⅎyφ | |
| 2 | 1 | 19.28 1870 | . . 3 ⊢ (∀y(φ ∧ ψ) ↔ (φ ∧ ∀yψ)) |
| 3 | 2 | albii 1566 | . 2 ⊢ (∀x∀y(φ ∧ ψ) ↔ ∀x(φ ∧ ∀yψ)) |
| 4 | aaan.2 | . . . 4 ⊢ Ⅎxψ | |
| 5 | 4 | nfal 1842 | . . 3 ⊢ Ⅎx∀yψ |
| 6 | 5 | 19.27 1869 | . 2 ⊢ (∀x(φ ∧ ∀yψ) ↔ (∀xφ ∧ ∀yψ)) |
| 7 | 3, 6 | bitri 240 | 1 ⊢ (∀x∀y(φ ∧ ψ) ↔ (∀xφ ∧ ∀yψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∧ wa 358 ∀wal 1540 Ⅎwnf 1544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-7 1734 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: mo 2226 2mo 2282 2eu4 2287 |
| Copyright terms: Public domain | W3C validator |