New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > hbnt | GIF version |
Description: Closed theorem version of bound-variable hypothesis builder hbn 1776. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
hbnt | ⊢ (∀x(φ → ∀xφ) → (¬ φ → ∀x ¬ φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6o 1750 | . . 3 ⊢ (¬ ∀x ¬ ∀xφ → φ) | |
2 | 1 | con1i 121 | . 2 ⊢ (¬ φ → ∀x ¬ ∀xφ) |
3 | con3 126 | . . 3 ⊢ ((φ → ∀xφ) → (¬ ∀xφ → ¬ φ)) | |
4 | 3 | al2imi 1561 | . 2 ⊢ (∀x(φ → ∀xφ) → (∀x ¬ ∀xφ → ∀x ¬ φ)) |
5 | 2, 4 | syl5 28 | 1 ⊢ (∀x(φ → ∀xφ) → (¬ φ → ∀x ¬ φ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: hbn 1776 19.9ht 1778 nfnd 1791 nfimdOLD 1809 hbnd 1883 |
Copyright terms: Public domain | W3C validator |