NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  hbsb3 GIF version

Theorem hbsb3 2043
Description: If y is not free in φ, x is not free in [y / x]φ. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
hbsb3.1 (φyφ)
Assertion
Ref Expression
hbsb3 ([y / x]φx[y / x]φ)

Proof of Theorem hbsb3
StepHypRef Expression
1 hbsb3.1 . . 3 (φyφ)
21sbimi 1652 . 2 ([y / x]φ → [y / x]yφ)
3 hbsb2a 2041 . 2 ([y / x]yφx[y / x]φ)
42, 3syl 15 1 ([y / x]φx[y / x]φ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540  [wsb 1648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649
This theorem is referenced by:  nfs1  2044  ax16ALT  2047
  Copyright terms: Public domain W3C validator