New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbimi | GIF version |
Description: Infer substitution into antecedent and consequent of an implication. (Contributed by NM, 25-Jun-1998.) |
Ref | Expression |
---|---|
sbimi.1 | ⊢ (φ → ψ) |
Ref | Expression |
---|---|
sbimi | ⊢ ([y / x]φ → [y / x]ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbimi.1 | . . . 4 ⊢ (φ → ψ) | |
2 | 1 | imim2i 13 | . . 3 ⊢ ((x = y → φ) → (x = y → ψ)) |
3 | 1 | anim2i 552 | . . . 4 ⊢ ((x = y ∧ φ) → (x = y ∧ ψ)) |
4 | 3 | eximi 1576 | . . 3 ⊢ (∃x(x = y ∧ φ) → ∃x(x = y ∧ ψ)) |
5 | 2, 4 | anim12i 549 | . 2 ⊢ (((x = y → φ) ∧ ∃x(x = y ∧ φ)) → ((x = y → ψ) ∧ ∃x(x = y ∧ ψ))) |
6 | df-sb 1649 | . 2 ⊢ ([y / x]φ ↔ ((x = y → φ) ∧ ∃x(x = y ∧ φ))) | |
7 | df-sb 1649 | . 2 ⊢ ([y / x]ψ ↔ ((x = y → ψ) ∧ ∃x(x = y ∧ ψ))) | |
8 | 5, 6, 7 | 3imtr4i 257 | 1 ⊢ ([y / x]φ → [y / x]ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∃wex 1541 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-sb 1649 |
This theorem is referenced by: sbbii 1653 sb6f 2039 hbsb3 2043 sbi2 2064 sbco 2083 sbidm 2085 sbal1 2126 sbal 2127 |
Copyright terms: Public domain | W3C validator |