NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ibir GIF version

Theorem ibir 233
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.)
Hypothesis
Ref Expression
ibir.1 (φ → (ψφ))
Assertion
Ref Expression
ibir (φψ)

Proof of Theorem ibir
StepHypRef Expression
1 ibir.1 . . 3 (φ → (ψφ))
21bicomd 192 . 2 (φ → (φψ))
32ibi 232 1 (φψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  elpr2  3753  opkelimagekg  4272  ffdm  5235  ov  5596  enprmaplem6  6082
  Copyright terms: Public domain W3C validator