New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ibi | GIF version |
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 17-Oct-2003.) |
Ref | Expression |
---|---|
ibi.1 | ⊢ (φ → (φ ↔ ψ)) |
Ref | Expression |
---|---|
ibi | ⊢ (φ → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibi.1 | . . 3 ⊢ (φ → (φ ↔ ψ)) | |
2 | 1 | biimpd 198 | . 2 ⊢ (φ → (φ → ψ)) |
3 | 2 | pm2.43i 43 | 1 ⊢ (φ → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: ibir 233 elimh 922 elab3gf 2991 elimhyp 3711 elimhyp2v 3712 elimhyp3v 3713 elimhyp4v 3714 elpwi 3731 elpr2 3753 elpri 3754 elsni 3758 eltpi 3771 snssi 3853 prssi 3864 evennn 4507 oddnn 4508 evennnul 4509 oddnnul 4510 sucevenodd 4511 sucoddeven 4512 eventfin 4518 oddtfin 4519 nnadjoin 4521 nnadjoinpw 4522 elxpi 4801 elfunsi 5832 trd 5922 frd 5923 extd 5924 symd 5925 refd 5928 antid 5930 connexd 5932 elqsi 5979 pmfun 6016 elmapi 6017 cannc 6334 cantc 6337 |
Copyright terms: Public domain | W3C validator |