Step | Hyp | Ref
| Expression |
1 | | breldm 4912 |
. . . . . . . 8
⊢ (sWp → s ∈ dom W) |
2 | | enprmaplem6.1 |
. . . . . . . . . 10
⊢ W = (r ∈ (A
↑m B) ↦ (◡r
“ {x})) |
3 | 2 | enprmaplem2 6078 |
. . . . . . . . 9
⊢ W Fn (A
↑m B) |
4 | | fndm 5183 |
. . . . . . . . 9
⊢ (W Fn (A
↑m B) → dom
W = (A
↑m B)) |
5 | 3, 4 | ax-mp 5 |
. . . . . . . 8
⊢ dom W = (A
↑m B) |
6 | 1, 5 | syl6eleq 2443 |
. . . . . . 7
⊢ (sWp → s ∈ (A
↑m B)) |
7 | | fnbrfvb 5359 |
. . . . . . . . 9
⊢ ((W Fn (A
↑m B) ∧ s ∈ (A
↑m B)) →
((W ‘s) = p ↔
sWp)) |
8 | 3, 6, 7 | sylancr 644 |
. . . . . . . 8
⊢ (sWp → ((W
‘s) = p ↔ sWp)) |
9 | 8 | ibir 233 |
. . . . . . 7
⊢ (sWp → (W
‘s) = p) |
10 | 6, 9 | jca 518 |
. . . . . 6
⊢ (sWp → (s
∈ (A
↑m B) ∧ (W
‘s) = p)) |
11 | | cnveq 4887 |
. . . . . . . . . . . . 13
⊢ (r = s →
◡r
= ◡s) |
12 | 11 | imaeq1d 4942 |
. . . . . . . . . . . 12
⊢ (r = s →
(◡r
“ {x}) = (◡s
“ {x})) |
13 | | vex 2863 |
. . . . . . . . . . . . . 14
⊢ s ∈
V |
14 | 13 | cnvex 5103 |
. . . . . . . . . . . . 13
⊢ ◡s ∈ V |
15 | | snex 4112 |
. . . . . . . . . . . . 13
⊢ {x} ∈
V |
16 | 14, 15 | imaex 4748 |
. . . . . . . . . . . 12
⊢ (◡s
“ {x}) ∈ V |
17 | 12, 2, 16 | fvmpt 5701 |
. . . . . . . . . . 11
⊢ (s ∈ (A ↑m B) → (W
‘s) = (◡s
“ {x})) |
18 | 17 | eqeq1d 2361 |
. . . . . . . . . 10
⊢ (s ∈ (A ↑m B) → ((W
‘s) = p ↔ (◡s
“ {x}) = p)) |
19 | 18 | 3ad2ant3 978 |
. . . . . . . . 9
⊢ ((x ≠ y ∧ A = {x, y} ∧ s ∈ (A
↑m B)) →
((W ‘s) = p ↔
(◡s
“ {x}) = p)) |
20 | | imassrn 5010 |
. . . . . . . . . . . 12
⊢ (◡s
“ {x}) ⊆ ran ◡s |
21 | | df-dm 4788 |
. . . . . . . . . . . . 13
⊢ dom s = ran ◡s |
22 | | elmapi 6017 |
. . . . . . . . . . . . . 14
⊢ (s ∈ (A ↑m B) → s:B–→A) |
23 | | fdm 5227 |
. . . . . . . . . . . . . 14
⊢ (s:B–→A
→ dom s = B) |
24 | | eqimss 3324 |
. . . . . . . . . . . . . 14
⊢ (dom s = B → dom
s ⊆
B) |
25 | 22, 23, 24 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (s ∈ (A ↑m B) → dom s
⊆ B) |
26 | 21, 25 | syl5eqssr 3317 |
. . . . . . . . . . . 12
⊢ (s ∈ (A ↑m B) → ran ◡s ⊆ B) |
27 | 20, 26 | syl5ss 3284 |
. . . . . . . . . . 11
⊢ (s ∈ (A ↑m B) → (◡s
“ {x}) ⊆ B) |
28 | 27 | 3ad2ant3 978 |
. . . . . . . . . 10
⊢ ((x ≠ y ∧ A = {x, y} ∧ s ∈ (A
↑m B)) → (◡s
“ {x}) ⊆ B) |
29 | | sseq1 3293 |
. . . . . . . . . 10
⊢ ((◡s
“ {x}) = p → ((◡s
“ {x}) ⊆ B ↔
p ⊆
B)) |
30 | 28, 29 | syl5ibcom 211 |
. . . . . . . . 9
⊢ ((x ≠ y ∧ A = {x, y} ∧ s ∈ (A
↑m B)) →
((◡s “ {x}) =
p → p ⊆ B)) |
31 | 19, 30 | sylbid 206 |
. . . . . . . 8
⊢ ((x ≠ y ∧ A = {x, y} ∧ s ∈ (A
↑m B)) →
((W ‘s) = p →
p ⊆
B)) |
32 | 31 | 3expia 1153 |
. . . . . . 7
⊢ ((x ≠ y ∧ A = {x, y}) →
(s ∈
(A ↑m B) → ((W
‘s) = p → p ⊆ B))) |
33 | 32 | imp3a 420 |
. . . . . 6
⊢ ((x ≠ y ∧ A = {x, y}) →
((s ∈
(A ↑m B) ∧ (W ‘s) =
p) → p ⊆ B)) |
34 | 10, 33 | syl5 28 |
. . . . 5
⊢ ((x ≠ y ∧ A = {x, y}) →
(sWp →
p ⊆
B)) |
35 | 34 | exlimdv 1636 |
. . . 4
⊢ ((x ≠ y ∧ A = {x, y}) →
(∃s
sWp →
p ⊆
B)) |
36 | | elrn 4897 |
. . . 4
⊢ (p ∈ ran W ↔ ∃s sWp) |
37 | | vex 2863 |
. . . . 5
⊢ p ∈
V |
38 | 37 | elpw 3729 |
. . . 4
⊢ (p ∈ ℘B ↔
p ⊆
B) |
39 | 35, 36, 38 | 3imtr4g 261 |
. . 3
⊢ ((x ≠ y ∧ A = {x, y}) →
(p ∈ ran
W → p ∈ ℘B)) |
40 | 39 | ssrdv 3279 |
. 2
⊢ ((x ≠ y ∧ A = {x, y}) →
ran W ⊆
℘B) |
41 | | eqid 2353 |
. . 3
⊢ (u ∈ B ↦ if(u ∈ p, x, y)) = (u ∈ B ↦ if(u ∈ p, x, y)) |
42 | | enprmaplem6.2 |
. . 3
⊢ B ∈
V |
43 | 2, 41, 42 | enprmaplem5 6081 |
. 2
⊢ ((x ≠ y ∧ A = {x, y}) →
℘B
⊆ ran W) |
44 | 40, 43 | eqssd 3290 |
1
⊢ ((x ≠ y ∧ A = {x, y}) →
ran W = ℘B) |