NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  enprmaplem6 GIF version

Theorem enprmaplem6 6082
Description: Lemma for enprmap 6083. The range of W is B. (Contributed by SF, 3-Mar-2015.)
Hypotheses
Ref Expression
enprmaplem6.1 W = (r (Am B) (r “ {x}))
enprmaplem6.2 B V
Assertion
Ref Expression
enprmaplem6 ((xy A = {x, y}) → ran W = B)
Distinct variable groups:   A,r   B,r   x,r   y,r
Allowed substitution hints:   A(x,y)   B(x,y)   W(x,y,r)

Proof of Theorem enprmaplem6
Dummy variables p s u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breldm 4912 . . . . . . . 8 (sWps dom W)
2 enprmaplem6.1 . . . . . . . . . 10 W = (r (Am B) (r “ {x}))
32enprmaplem2 6078 . . . . . . . . 9 W Fn (Am B)
4 fndm 5183 . . . . . . . . 9 (W Fn (Am B) → dom W = (Am B))
53, 4ax-mp 5 . . . . . . . 8 dom W = (Am B)
61, 5syl6eleq 2443 . . . . . . 7 (sWps (Am B))
7 fnbrfvb 5359 . . . . . . . . 9 ((W Fn (Am B) s (Am B)) → ((Ws) = psWp))
83, 6, 7sylancr 644 . . . . . . . 8 (sWp → ((Ws) = psWp))
98ibir 233 . . . . . . 7 (sWp → (Ws) = p)
106, 9jca 518 . . . . . 6 (sWp → (s (Am B) (Ws) = p))
11 cnveq 4887 . . . . . . . . . . . . 13 (r = sr = s)
1211imaeq1d 4942 . . . . . . . . . . . 12 (r = s → (r “ {x}) = (s “ {x}))
13 vex 2863 . . . . . . . . . . . . . 14 s V
1413cnvex 5103 . . . . . . . . . . . . 13 s V
15 snex 4112 . . . . . . . . . . . . 13 {x} V
1614, 15imaex 4748 . . . . . . . . . . . 12 (s “ {x}) V
1712, 2, 16fvmpt 5701 . . . . . . . . . . 11 (s (Am B) → (Ws) = (s “ {x}))
1817eqeq1d 2361 . . . . . . . . . 10 (s (Am B) → ((Ws) = p ↔ (s “ {x}) = p))
19183ad2ant3 978 . . . . . . . . 9 ((xy A = {x, y} s (Am B)) → ((Ws) = p ↔ (s “ {x}) = p))
20 imassrn 5010 . . . . . . . . . . . 12 (s “ {x}) ran s
21 df-dm 4788 . . . . . . . . . . . . 13 dom s = ran s
22 elmapi 6017 . . . . . . . . . . . . . 14 (s (Am B) → s:B–→A)
23 fdm 5227 . . . . . . . . . . . . . 14 (s:B–→A → dom s = B)
24 eqimss 3324 . . . . . . . . . . . . . 14 (dom s = B → dom s B)
2522, 23, 243syl 18 . . . . . . . . . . . . 13 (s (Am B) → dom s B)
2621, 25syl5eqssr 3317 . . . . . . . . . . . 12 (s (Am B) → ran s B)
2720, 26syl5ss 3284 . . . . . . . . . . 11 (s (Am B) → (s “ {x}) B)
28273ad2ant3 978 . . . . . . . . . 10 ((xy A = {x, y} s (Am B)) → (s “ {x}) B)
29 sseq1 3293 . . . . . . . . . 10 ((s “ {x}) = p → ((s “ {x}) Bp B))
3028, 29syl5ibcom 211 . . . . . . . . 9 ((xy A = {x, y} s (Am B)) → ((s “ {x}) = pp B))
3119, 30sylbid 206 . . . . . . . 8 ((xy A = {x, y} s (Am B)) → ((Ws) = pp B))
32313expia 1153 . . . . . . 7 ((xy A = {x, y}) → (s (Am B) → ((Ws) = pp B)))
3332imp3a 420 . . . . . 6 ((xy A = {x, y}) → ((s (Am B) (Ws) = p) → p B))
3410, 33syl5 28 . . . . 5 ((xy A = {x, y}) → (sWpp B))
3534exlimdv 1636 . . . 4 ((xy A = {x, y}) → (s sWpp B))
36 elrn 4897 . . . 4 (p ran Ws sWp)
37 vex 2863 . . . . 5 p V
3837elpw 3729 . . . 4 (p Bp B)
3935, 36, 383imtr4g 261 . . 3 ((xy A = {x, y}) → (p ran Wp B))
4039ssrdv 3279 . 2 ((xy A = {x, y}) → ran W B)
41 eqid 2353 . . 3 (u B if(u p, x, y)) = (u B if(u p, x, y))
42 enprmaplem6.2 . . 3 B V
432, 41, 42enprmaplem5 6081 . 2 ((xy A = {x, y}) → B ran W)
4440, 43eqssd 3290 1 ((xy A = {x, y}) → ran W = B)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   w3a 934  wex 1541   = wceq 1642   wcel 1710  wne 2517  Vcvv 2860   wss 3258   ifcif 3663  cpw 3723  {csn 3738  {cpr 3739   class class class wbr 4640  cima 4723  ccnv 4772  dom cdm 4773  ran crn 4774   Fn wfn 4777  –→wf 4778  cfv 4782  (class class class)co 5526   cmpt 5652  m cmap 6000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt 5653  df-mpt2 5655  df-txp 5737  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-map 6002
This theorem is referenced by:  enprmap  6083
  Copyright terms: Public domain W3C validator