NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  imdistan GIF version

Theorem imdistan 670
Description: Distribution of implication with conjunction. (Contributed by NM, 31-May-1999.) (Proof shortened by Wolf Lammen, 6-Dec-2012.)
Assertion
Ref Expression
imdistan ((φ → (ψχ)) ↔ ((φ ψ) → (φ χ)))

Proof of Theorem imdistan
StepHypRef Expression
1 pm5.42 531 . 2 ((φ → (ψχ)) ↔ (φ → (ψ → (φ χ))))
2 impexp 433 . 2 (((φ ψ) → (φ χ)) ↔ (φ → (ψ → (φ χ))))
31, 2bitr4i 243 1 ((φ → (ψχ)) ↔ ((φ ψ) → (φ χ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  imdistand  673  pm5.3  692  rmoim  3036  ss2rab  3343
  Copyright terms: Public domain W3C validator