New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rmoim | GIF version |
Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
Ref | Expression |
---|---|
rmoim | ⊢ (∀x ∈ A (φ → ψ) → (∃*x ∈ A ψ → ∃*x ∈ A φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2620 | . . 3 ⊢ (∀x ∈ A (φ → ψ) ↔ ∀x(x ∈ A → (φ → ψ))) | |
2 | imdistan 670 | . . . 4 ⊢ ((x ∈ A → (φ → ψ)) ↔ ((x ∈ A ∧ φ) → (x ∈ A ∧ ψ))) | |
3 | 2 | albii 1566 | . . 3 ⊢ (∀x(x ∈ A → (φ → ψ)) ↔ ∀x((x ∈ A ∧ φ) → (x ∈ A ∧ ψ))) |
4 | 1, 3 | bitri 240 | . 2 ⊢ (∀x ∈ A (φ → ψ) ↔ ∀x((x ∈ A ∧ φ) → (x ∈ A ∧ ψ))) |
5 | moim 2250 | . . 3 ⊢ (∀x((x ∈ A ∧ φ) → (x ∈ A ∧ ψ)) → (∃*x(x ∈ A ∧ ψ) → ∃*x(x ∈ A ∧ φ))) | |
6 | df-rmo 2623 | . . 3 ⊢ (∃*x ∈ A ψ ↔ ∃*x(x ∈ A ∧ ψ)) | |
7 | df-rmo 2623 | . . 3 ⊢ (∃*x ∈ A φ ↔ ∃*x(x ∈ A ∧ φ)) | |
8 | 5, 6, 7 | 3imtr4g 261 | . 2 ⊢ (∀x((x ∈ A ∧ φ) → (x ∈ A ∧ ψ)) → (∃*x ∈ A ψ → ∃*x ∈ A φ)) |
9 | 4, 8 | sylbi 187 | 1 ⊢ (∀x ∈ A (φ → ψ) → (∃*x ∈ A ψ → ∃*x ∈ A φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 ∈ wcel 1710 ∃*wmo 2205 ∀wral 2615 ∃*wrmo 2618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-ral 2620 df-rmo 2623 |
This theorem is referenced by: rmoimia 3037 2rmorex 3041 |
Copyright terms: Public domain | W3C validator |