NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rmoim GIF version

Theorem rmoim 3036
Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Assertion
Ref Expression
rmoim (x A (φψ) → (∃*x A ψ∃*x A φ))

Proof of Theorem rmoim
StepHypRef Expression
1 df-ral 2620 . . 3 (x A (φψ) ↔ x(x A → (φψ)))
2 imdistan 670 . . . 4 ((x A → (φψ)) ↔ ((x A φ) → (x A ψ)))
32albii 1566 . . 3 (x(x A → (φψ)) ↔ x((x A φ) → (x A ψ)))
41, 3bitri 240 . 2 (x A (φψ) ↔ x((x A φ) → (x A ψ)))
5 moim 2250 . . 3 (x((x A φ) → (x A ψ)) → (∃*x(x A ψ) → ∃*x(x A φ)))
6 df-rmo 2623 . . 3 (∃*x A ψ∃*x(x A ψ))
7 df-rmo 2623 . . 3 (∃*x A φ∃*x(x A φ))
85, 6, 73imtr4g 261 . 2 (x((x A φ) → (x A ψ)) → (∃*x A ψ∃*x A φ))
94, 8sylbi 187 1 (x A (φψ) → (∃*x A ψ∃*x A φ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  wal 1540   wcel 1710  ∃*wmo 2205  wral 2615  ∃*wrmo 2618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-ral 2620  df-rmo 2623
This theorem is referenced by:  rmoimia  3037  2rmorex  3041
  Copyright terms: Public domain W3C validator