| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > pm5.3 | GIF version | ||
| Description: Theorem *5.3 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| pm5.3 | ⊢ (((φ ∧ ψ) → χ) ↔ ((φ ∧ ψ) → (φ ∧ χ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impexp 433 | . 2 ⊢ (((φ ∧ ψ) → χ) ↔ (φ → (ψ → χ))) | |
| 2 | imdistan 670 | . 2 ⊢ ((φ → (ψ → χ)) ↔ ((φ ∧ ψ) → (φ ∧ χ))) | |
| 3 | 1, 2 | bitri 240 | 1 ⊢ (((φ ∧ ψ) → χ) ↔ ((φ ∧ ψ) → (φ ∧ χ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |