NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  imim12i GIF version

Theorem imim12i 53
Description: Inference joining two implications. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 29-Oct-2011.)
Hypotheses
Ref Expression
imim12i.1 (φψ)
imim12i.2 (χθ)
Assertion
Ref Expression
imim12i ((ψχ) → (φθ))

Proof of Theorem imim12i
StepHypRef Expression
1 imim12i.1 . 2 (φψ)
2 imim12i.2 . . 3 (χθ)
32imim2i 13 . 2 ((ψχ) → (ψθ))
41, 3syl5 28 1 ((ψχ) → (φθ))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  imim1i  54  dedlem0b  919  meredith  1404  19.38OLD  1874  exmoeu  2246
  Copyright terms: Public domain W3C validator