| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sylsyld | GIF version | ||
| Description: Virtual deduction rule e12 without virtual deduction symbols. (Contributed by Alan Sare, 20-Apr-2011.) |
| Ref | Expression |
|---|---|
| sylsyld.1 | ⊢ (φ → ψ) |
| sylsyld.2 | ⊢ (φ → (χ → θ)) |
| sylsyld.3 | ⊢ (ψ → (θ → τ)) |
| Ref | Expression |
|---|---|
| sylsyld | ⊢ (φ → (χ → τ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylsyld.2 | . 2 ⊢ (φ → (χ → θ)) | |
| 2 | sylsyld.1 | . . 3 ⊢ (φ → ψ) | |
| 3 | sylsyld.3 | . . 3 ⊢ (ψ → (θ → τ)) | |
| 4 | 2, 3 | syl 15 | . 2 ⊢ (φ → (θ → τ)) |
| 5 | 1, 4 | syld 40 | 1 ⊢ (φ → (χ → τ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: ee02 1377 ax10o 1952 a16gALT 2049 a16g-o 2186 ax10o-o 2203 |
| Copyright terms: Public domain | W3C validator |