New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sylsyld | GIF version |
Description: Virtual deduction rule e12 without virtual deduction symbols. (Contributed by Alan Sare, 20-Apr-2011.) |
Ref | Expression |
---|---|
sylsyld.1 | ⊢ (φ → ψ) |
sylsyld.2 | ⊢ (φ → (χ → θ)) |
sylsyld.3 | ⊢ (ψ → (θ → τ)) |
Ref | Expression |
---|---|
sylsyld | ⊢ (φ → (χ → τ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylsyld.2 | . 2 ⊢ (φ → (χ → θ)) | |
2 | sylsyld.1 | . . 3 ⊢ (φ → ψ) | |
3 | sylsyld.3 | . . 3 ⊢ (ψ → (θ → τ)) | |
4 | 2, 3 | syl 15 | . 2 ⊢ (φ → (θ → τ)) |
5 | 1, 4 | syld 40 | 1 ⊢ (φ → (χ → τ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: ee02 1377 ax10o 1952 a16gALT 2049 a16g-o 2186 ax10o-o 2203 |
Copyright terms: Public domain | W3C validator |